makeForecastData {EBMAforecast} | R Documentation |
Build a ensemble forecasting data object
Description
This function uses the component model forecasts and dependent variable observations provided by the user to create an object of class ForecastData
, which can then be used to calibrate and fit the ensemble. Individual slots of the ForecastData
object can be accessed and changed using the get
and set
functions respectively. Missing predictions are allowed in the calibration set.
Usage
makeForecastData(
.predCalibration = array(NA, dim = c(0, 0, 0)),
.predTest = array(NA, dim = c(0, 0, 0)),
.outcomeCalibration = numeric(),
.outcomeTest = numeric(),
.modelNames = character(),
...
)
## S4 method for signature 'ANY'
makeForecastData(
.predCalibration,
.predTest,
.outcomeCalibration,
.outcomeTest,
.modelNames
)
Arguments
.predCalibration |
A matrix with the number of rows being the number of observations in the calibration period and a column with calibration period predictions for each model. |
.predTest |
A vector with the number of rows being the number of observations in the test period and a column with test period predictions for each model. |
.outcomeCalibration |
A vector with the true values of the dependent variable for each observation in the calibration period. |
.outcomeTest |
A vector with the true values of the dependent variable for each observation in the test period. |
.modelNames |
A vector of length p with the names of the component models. |
... |
Additional arguments not implemented |
Value
A data object of the class 'ForecastData' with the following slots:
predCalibration |
An array containing the predictions of all component models for all observations in the calibration period. |
predTest |
An array containing the predictions of all component models for all observations in the test period. |
outcomeCalibration |
A vector containing the true values of the dependent variable for all observations in the calibration period. |
outcomeTest |
A vector containing the true values of the dependent variable for all observations in the test period. |
modelNames |
A character vector containing the names of all component models. If no model names are specified, names will be assigned automatically. |
Examples
## Not run:
data(calibrationSample)
data(testSample)
this.ForecastData <- makeForecastData(.predCalibration=calibrationSample[,c("LMER", "SAE", "GLM")],
.outcomeCalibration=calibrationSample[,"Insurgency"],.predTest=testSample[,c("LMER", "SAE", "GLM")],
.outcomeTest=testSample[,"Insurgency"], .modelNames=c("LMER", "SAE", "GLM"))
### to acces individual slots in the ForecastData object
getPredCalibration(this.ForecastData)
getOutcomeCalibration(this.ForecastData)
getPredTest(this.ForecastData)
getOutcomeTest(this.ForecastData)
getModelNames(this.ForecastData)
### to assign individual slots, use set functions
setPredCalibration(this.ForecastData)<-calibrationSample[,c("LMER", "SAE", "GLM")]
setOutcomeCalibration(this.ForecastData)<-calibrationSample[,"Insurgency"]
setPredTest(this.ForecastData)<-testSample[,c("LMER", "SAE", "GLM")]
setOutcomeTest(this.ForecastData)<-testSample[,"Insurgency"]
setModelNames(this.ForecastData)<-c("LMER", "SAE", "GLM")
## End(Not run)