print,ForecastData-method {EBMAforecast} | R Documentation |
Print and Show methods for forecast data
Description
Functions to print and show the contents of a data object of the class 'ForecastData' or 'SummaryForecastData'.
Usage
## S4 method for signature 'ForecastData'
print(x, digits = 3, ...)
## S4 method for signature 'ForecastData'
show(object)
## S4 method for signature 'SummaryForecastData'
print(x, digits = 3, ...)
## S4 method for signature 'SummaryForecastData'
show(object)
## S4 method for signature 'ForecastData'
print(x, digits = 3, ...)
## S4 method for signature 'ForecastData'
show(object)
Arguments
x |
An object of the class 'ForecastData' or 'SummaryForecastData'. |
digits |
An integer specifying the number of significant digits to print. The default is 3. |
... |
Not implemented |
object |
An object of the class 'ForecastData' or 'SummaryForecastData'. |
Author(s)
Michael D. Ward <michael.d.ward@duke.edu> and Jacob M. Montgomery <jacob.montgomery@wustl.edu> and Florian M. Hollenbach <florian.hollenbach@tamu.edu>
References
Montgomery, Jacob M., Florian M. Hollenbach and Michael D. Ward. (2015). Calibrating ensemble forecasting models with sparse data in the social sciences. International Journal of Forecasting. 31: 930-942.
Montgomery, Jacob M., Florian M. Hollenbach and Michael D. Ward. (2012). Improving Predictions Using Ensemble Bayesian Model Averaging. Political Analysis. 20: 271-291.
Examples
## Not run: data(calibrationSample)
data(testSample)
this.ForecastData <- makeForecastData(.predCalibration=calibrationSample[,c("LMER", "SAE", "GLM")],
.outcomeCalibration=calibrationSample[,"Insurgency"],.predTest=testSample[,c("LMER", "SAE", "GLM")],
.outcomeTest=testSample[,"Insurgency"], .modelNames=c("LMER", "SAE", "GLM"))
this.ensemble <- calibrateEnsemble(this.ForecastData, model="logit", tol=0.001,exp=3)
summary.object <- summary(this.ensemble, period="calibration")
print(summary.object)
show(summary.object)
## End(Not run)