EBelasticNet.Gaussian {EBEN} | R Documentation |
The EB Elastic Net Algorithm for Gaussian Model
Description
General linear regression, normal-Gamma (NG) hierarchical prior for regression coefficients
Usage
EBelasticNet.Gaussian(BASIS, Target, lambda, alpha,Epis = FALSE,verbose = 0)
Arguments
BASIS |
sample matrix; rows correspond to samples, columns correspond to features |
Target |
Response each individual |
lambda |
Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; lambda>0 |
alpha |
Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; 0<alpha<1 |
Epis |
TRUE or FALSE for including two-way interactions |
verbose |
0 or 1; 1: display message; 0 no message |
Details
If Epis=TRUE, the program adds two-way interaction of K*(K-1)/2 more columns to BASIS
Value
weight |
the none-zero regression coefficients: |
WaldScore |
Wald Score |
Intercept |
Intercept |
lambda |
the hyperparameter; same as input lambda |
alpha |
the hyperparameter; same as input alpha |
Author(s)
Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL
References
Huang, A., Xu, S., and Cai, X. (2014). Empirical Bayesian elastic net for multiple quantitative trait locus mapping. Heredity 10.1038/hdy.2014.79
Examples
library(EBEN)
data(BASIS)
data(y)
n = 50;
k = 100;
BASIS = BASIS[1:n,1:k];
y = y[1:n];
Blup = EBelasticNet.Gaussian(BASIS, y,lambda = 0.0072,alpha = 0.95, Epis = FALSE,verbose = 0)
betas = Blup$weight
betas