EBelasticNet.Binomial {EBEN} | R Documentation |
The EB Elastic Net Algorithm for Binomial Model with Normal-Gamma(NG) Prior Distribution
Description
Generalized linear regression, normal-Gxponential (NG) hierarchical prior for regression coefficients
Usage
EBelasticNet.Binomial(BASIS, Target, lambda, alpha,Epis = FALSE,verbose = 0)
Arguments
BASIS |
sample matrix; rows correspond to samples, columns correspond to features |
Target |
Class label of each individual, TAKES VALUES OF 0 OR 1 |
lambda |
Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; lambda>0 |
alpha |
Hyperparameter controls degree of shrinkage; can be obtained via Cross Validation; 0<alpha<1 |
Epis |
TRUE or FALSE for including two-way interactions |
verbose |
0 or 1; 1: display message; 0 no message |
Details
If Epis=TRUE, the program adds two-way interaction of K*(K-1)/2 more columns to BASIS
Value
weight |
the none-zero regression coefficients: |
logLikelihood |
log likelihood from the final regression coefficients |
WaldScore |
Wald Score |
Intercept |
Intercept |
lambda |
the hyperparameter; same as input lambda |
alpha |
the hyperparameter; same as input alpha |
Author(s)
Anhui Huang; Dept of Electrical and Computer Engineering, Univ of Miami, Coral Gables, FL
References
Huang A, Xu S, Cai X: Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. BMC genetics 2013, 14(1):5.
Examples
library(EBEN)
data(BASISbinomial)
data(yBinomial)
#reduce sample size to speed up the running time
n = 50;
k = 100;
N = length(yBinomial);
set = sample(N,n);
BASIS = BASISbinomial[set,1:k];
y = yBinomial[set];
output = EBelasticNet.Binomial(BASIS, y,lambda = 0.1,alpha = 0.5, Epis = FALSE,verbose = 5)