EB_CS {EBCHS} | R Documentation |
Main function used in the paper (Du and Hu, 2020)
Description
Give a sequence of chi-squared statistic values, the function computes the posterior mean, variance, and skewness of the noncentrality parameter given the data.
Usage
EB_CS(
x,
df,
qq = c(0.2, 0.4, 0.6, 0.8),
method = c("LS", "PLS", "g_model"),
mixture = FALSE
)
Arguments
x |
a sequence of chi-squared test statistics |
df |
the degrees of freedom |
qq |
the quantiles used in spline basis |
method |
LS: parametric least-squares; PLS: penalized least-squares; g-model: g-modeling |
mixture |
default is FALSE: there is no point mass at zero. |
Value
a list: posterior mean, variance, and skewness estimates
References
Du and Hu (2020), An Empirical Bayes Method for Chi-Squared Data, Journal of American Statistical Association, forthcoming.
Examples
p = 1000
k = 7
# the prior distribution for lambda
alpha = 2
beta = 10
# lambda
lambda = rep(0, p)
pi_0 = 0.8
p_0 = floor(p*pi_0)
p_1 = p-p_0
lambda[(p_0+1):p] = rgamma(p_1, shape = alpha, rate=1/beta)
# Generate a Poisson RV
J = sapply(1:p, function(x){rpois(1, lambda[x]/2)})
X = sapply(1:p, function(x){rchisq(1, k+2*J[x])})
qq_set = seq(0.01, 0.99, 0.01)
out = EB_CS(X, k, qq=qq_set, method='LS', mixture = TRUE)
E = out$E_lambda
V = out$V_lambda
S = out$S_lambda
[Package EBCHS version 0.1.0 Index]