PB.CI {EAinference} | R Documentation |
Provide (1-alpha)%
confidence interval of each coefficients
Description
Using samples drawn by PBsampler
, computes
(1-alpha)%
confidence interval of each coefficient.
Usage
PB.CI(object, alpha = 0.05, method = "debias", parallel = FALSE,
ncores = 2L)
Arguments
object |
bootstrap samples of class |
alpha |
significance level. |
method |
bias-correction method. Either to be "none" or "debias". |
parallel |
logical. If |
ncores |
integer. The number of cores to use for parallelization. |
Details
If method = "none"
, PB.CI
simply compute
the two-sided (1-alpha)
quantile of the sampled coefficients.
If method = "debias"
, we use
debiased estimator to compute confidence interval.
Value
(1-alpha)%
confidence interval of each coefficients
References
Zhang, C., Zhang, S. (2014), "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society: Series B, 76, 217–242.
Dezeure, R., Buhlmann, P., Meier, L. and Meinshausen, N. (2015), "High-Dimensional Inference: Confidence Intervals, p-values and R-Software hdi," Statistical Science, 30(4), 533-558
Examples
set.seed(1234)
n <- 40
p <- 50
Niter <- 10
X <- matrix(rnorm(n*p), n)
object <- PBsampler(X = X, PE_1 = c(1,1,rep(0,p-2)), sig2_1 = 1, lbd_1 = .5,
niter = 100, type = "lasso")
parallel <- (.Platform$OS.type != "windows")
PB.CI(object = object, alpha = .05, method = "none")