svdGP {DynamicGP} | R Documentation |
Full SVD-Based GP Models
Description
This function fits a full SVD-based GP model with test set X0
,
design set design
and response matrix resp
.
Usage
svdGP(design,resp,X0=design,nstarts=5,gstart=0.0001,
frac=.95,centralize=FALSE,nthread=1,clutype="PSOCK")
Arguments
design |
An |
resp |
An |
X0 |
An |
nstarts |
The number of starting points used in the numerical maximization of
the posterior density function. The larger |
gstart |
The starting number and upper bound for estimating the nugget
parameter. If |
frac |
The threshold in the cumulative percentage criterion to select the number of SVD bases. The default value is 0.95. |
centralize |
If |
nthread |
The number of threads (processes) used in parallel execution of this
function. |
clutype |
The type of cluster in the R package "parallel" to perform
parallelization. The default value is "PSOCK". Required only if
|
Value
pmean |
An |
ps2 |
An |
Author(s)
Ru Zhang heavenmarshal@gmail.com,
C. Devon Lin devon.lin@queensu.ca,
Pritam Ranjan pritamr@iimidr.ac.in
See Also
Examples
library("lhs")
forretal <- function(x,t,shift=1)
{
par1 <- x[1]*6+4
par2 <- x[2]*16+4
par3 <- x[3]*6+1
t <- t+shift
y <- (par1*t-2)^2*sin(par2*t-par3)
}
timepoints <- seq(0,1,len=200)
design <- lhs::randomLHS(50,3)
test <- lhs::randomLHS(50,3)
## evaluate the response matrix on the design matrix
resp <- apply(design,1,forretal,timepoints)
## fit full SVD-based GP model
ret <- svdGP(design,resp,test,frac=.95,nstarts=1,
centralize=TRUE,nthread=2)