iqLearn {DynTxRegime} | R Documentation |
Interactive Q-Learning
Description
The complete interactive Q-Learning algorithm.
Usage
## Second-Stage Analysis
iqLearnSS(..., moMain, moCont, data, response, txName, iter = 0L,
verbose = TRUE)
## First-Stage Analysis for Fitted Main Effects
iqLearnFSM(..., moMain, moCont, data, response, txName, iter = 0L,
verbose = TRUE)
## First-Stage Analysis for Fitted Contrasts
iqLearnFSC(..., moMain, moCont, data, response, txName, iter = 0L,
verbose = TRUE)
## First-Stage Analysis of Contrast Variance Log-Linear Model
iqLearnFSV(..., object, moMain, moCont, data, iter = 0L, verbose = TRUE)
Arguments
... |
ignored. Provided to require named inputs. |
moMain |
An object of class modelObj or a list of objects of class modelObjSubset, which define the models and R methods to be used to obtain parameter estimates and predictions for the main effects component of the outcome regression. See ?modelObj and/or ?modelObjSubset for details. NULL is an acceptable value if moCont is defined. |
moCont |
An object of class modelObj or a list of objects of class modelObjSubset, which define the models and R methods to be used to obtain parameter estimates and predictions for the contrasts component of the outcome regression. See ?modelObj and/or ?modelObjSubset for details. NULL is an acceptable value if moMain is defined. |
data |
A data frame of covariates and treatment history. |
response |
For the second stage analysis, the response vector. For first stage analyses, the value object returned by iqLearnSS(). |
object |
The value object returned by iqLearFSC() |
txName |
A character string giving column header of treatment variable in data |
iter |
An integer. See ?iter for details |
verbose |
A logical. If TRUE, screen prints are generated. |
References
Laber, EB, Linn, KA, and Stefanski, LA (2014). Interactive model building for Q-Learning. Biometrika, 101, 831–847. PMCID: PMC4274394.
See Also
Other statistical methods:
bowl()
,
earl()
,
optimalClass()
,
optimalSeq()
,
owl()
,
qLearn()
,
rwl()
Other multiple decision point methods:
bowl()
,
optimalClass()
,
optimalSeq()
,
qLearn()
Examples
# Load and process data set
data(bmiData)
# define the negative 12 month change in BMI from baseline
y12 <- -100*(bmiData[,6L] - bmiData[,4L])/bmiData[,4L]
#### Full Interactive Q-Learning Algorithm
### Second-Stage Analysis
# outcome model
moMain <- buildModelObj(model = ~parentBMI+month4BMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~race + parentBMI+month4BMI,
solver.method = 'lm')
fitSS <- iqLearnSS(moMain = moMain, moCont = moCont,
data = bmiData, response = y12, txName = 'A2')
### First-Stage Analysis Main Effects Term
# main effects model
moMain <- buildModelObj(model = ~parentBMI+baselineBMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~race + parentBMI+baselineBMI,
solver.method = 'lm')
fitFSM <- iqLearnFSM(moMain = moMain, moCont = moCont,
data = bmiData, response = fitSS, txName = 'A1')
### First-Stage Analysis Contrasts Term
# contrasts model
moMain <- buildModelObj(model = ~parentBMI+baselineBMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~race + parentBMI+baselineBMI,
solver.method = 'lm')
fitFSC <- iqLearnFSC(moMain = moMain, moCont = moCont,
data = bmiData, response = fitSS, txName = 'A1')
### First-Stage Analysis Contrasts Variance - Log-linear
# contrasts variance model
moMain <- buildModelObj(model = ~baselineBMI,
solver.method = 'lm')
moCont <- buildModelObj(model = ~baselineBMI,
solver.method = 'lm')
fitFSV <- iqLearnFSV(object = fitFSC, moMain = moMain, moCont = moCont,
data = bmiData)
####Available methods
### Estimated value
estimator(x = fitFSC, y = fitFSM, z = fitFSV, w = fitSS, dens = 'nonpar')
## Estimated optimal treatment and decision functions for training data
## Second stage optimal treatments
optTx(x = fitSS)
## First stage optimal treatments when contrast variance is modeled.
optTx(x = fitFSM, y = fitFSC, z = fitFSV, dens = 'nonpar')
## First stage optimal treatments when contrast variance is constant.
optTx(x = fitFSM, y = fitFSC, dens = 'nonpar')
## Estimated optimal treatment and decision functions for new data
## Second stage optimal treatments
optTx(x = fitSS, bmiData)
## First stage optimal treatments when contrast variance is modeled.
optTx(x = fitFSM, y = fitFSC, z = fitFSV, dens = 'nonpar', bmiData)
## First stage optimal treatments when contrast variance is constant.
optTx(x = fitFSM, y = fitFSC, dens = 'nonpar', bmiData)
### The following methods are available for all objects: fitSS, fitFSM,
### fitFSC and fitFSV. We include only one here for illustration.
# Coefficients of the outcome regression objects
coef(object = fitSS)
# Description of method used to obtain object
DTRstep(object = fitFSM)
# Value object returned by outcome regression method
fitObject(object = fitFSC)
# Value object returned by outcome regression method
outcome(object = fitFSV)
# Plots if defined by outcome regression method
dev.new()
par(mfrow = c(2,4))
plot(x = fitSS)
plot(x = fitSS, suppress = TRUE)
# Show main results of method
show(object = fitFSM)
# Show summary results of method
summary(object = fitFSV)