GetDenoisingResults {DynClust} | R Documentation |
Get denoising step result
Description
GetDenoisingResults
returns the denoised version of
a dynamical image sequence as an array having the same
dimensions as the original sequence.
Usage
GetDenoisingResults(data.array, res.listdenois)
Arguments
data.array |
a (2D or 3D)+T array containing the original dynamic sequence of images (the dataset). The last dimension is the time. |
res.listdenois |
the list resulting from the
|
Value
an array with same dimension as data.array
containing the denoised version.
Author(s)
Tiffany Lieury, Christophe Pouzat, Yves Rozenholc
References
Rozenholc, Y. and Reiss, M. (2012) Preserving time structures while denoising a dynamical image, Mathematical Methods for Signal and Image Analysis and Representation (Chapter 12), Florack, L. and Duits, R. and Jongbloed, G. and van~Lieshout, M.-C. and Davies, L. Ed., Springer-Verlag, Berlin
Lieury, T. and Pouzat, C. and Rozenholc, Y. (submitted) Spatial denoising and clustering of dynamical image sequence: application to DCE imaging in medicine and calcium imaging in neurons
See Also
Examples
## Not run:
library(DynClust)
## use fluorescence calcium imaging of neurons performed with Fura 2 excited at 340 nm
data('adu340_4small',package='DynClust')
## Gain of the CCD camera:
G <- 0.146
## readout variance of the CCD camera:
sro2 <- (16.4)^2
## Stabilization of the variance to get a normalized dataset (variance=1)
FT <- 2*sqrt(adu340_4small/G + sro2)
FT.range = range(FT)
## launches the denoising step on the dataset with a statistical level of 5%
FT.den.tmp <- RunDenoising(FT,1,mask.size=NA,nproc=2)
## get the results of the denoising step
FT.den.res <- GetDenoisingResults(FT,FT.den.tmp)
## plot results at time 50 in same grey scale
par(mfrow=c(1,3))
image(FT[,,50],zlim=FT.range,col=gray(seq(0,1,l=128)))
title('Original')
image(FT.den.res[,,50],zlim=FT.range,col=gray(seq(0,1,l=128)))
title('Denoised')
image(FT.den.res[,,50]-FT[,,50],col=gray(seq(0,1,l=128)))
title('Residuals')
## End(Not run)