monitor_long_surv {DySS}R Documentation

Monitor Longitudinal Data for Survival Outcomes

Description

Monitor Longitudinal Data for Survival Outcomes

Usage

monitor_long_surv(
  data_array_new,
  time_matrix_new,
  nobs_new,
  pattern,
  method,
  parameter = 0.5,
  CL = Inf
)

Arguments

data_array_new

observed data arranged in a numeric array format.
data_array_new[i,j,k] is the jth observation of the kth dimension of the ith subject.

time_matrix_new

observation times arranged in a numeric matrix format.
time_matrix_new[i,j] is the jth observation time of the ith subject.
data_array_new[i,j,] is observed at time_matrix[i,j].

nobs_new

number of observations arranged as an integer vector.
nobs_new[i] is the number of observations for the ith subject.

pattern

the estimated longitudinal and survival pattern from estimate_pattern_long_surv.

method

a character value specifying the smoothing method
If method="risk", apply the risk monitoring method by You and Qiu (2020).

parameter

a numeric value.
The weighting parameter in the modified EWMA charts.

CL

a numeric value specifying the control limit

Value

a list that stores the result.

$chart

charting statistics arranged in a matrix.

$standardized_values

standardized values arranged in a matrix.

References

You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.

Examples

data("data_example_long_surv")

result_pattern<-estimate_pattern_long_surv(
  data_array=data_example_long_surv$data_array_IC,
  time_matrix=data_example_long_surv$time_matrix_IC,
  nobs=data_example_long_surv$nobs_IC,
  starttime=data_example_long_surv$starttime_IC,
  survtime=data_example_long_surv$survtime_IC,
  survevent=data_example_long_surv$survevent_IC,
  design_interval=data_example_long_surv$design_interval,
  n_time_units=data_example_long_surv$n_time_units,
  estimation_method="risk",
  smoothing_method="local linear",
  bw_beta=0.05,
  bw_mean=0.1,
  bw_var=0.1)

result_monitoring<-monitor_long_surv(
  data_array_new=data_example_long_surv$data_array_OC,
  time_matrix_new=data_example_long_surv$time_matrix_OC,
  nobs_new=data_example_long_surv$nobs_OC,
  pattern=result_pattern,
  method="risk",
  parameter=0.5)

[Package DySS version 1.0 Index]