monitor_long_surv {DySS} | R Documentation |
Monitor Longitudinal Data for Survival Outcomes
Description
Monitor Longitudinal Data for Survival Outcomes
Usage
monitor_long_surv(
data_array_new,
time_matrix_new,
nobs_new,
pattern,
method,
parameter = 0.5,
CL = Inf
)
Arguments
data_array_new |
observed data arranged in a numeric array format. |
time_matrix_new |
observation times arranged in a numeric matrix format. |
nobs_new |
number of observations arranged as an integer vector. |
pattern |
the estimated longitudinal and survival pattern from |
method |
a character value specifying the smoothing method |
parameter |
a numeric value. |
CL |
a numeric value specifying the control limit |
Value
a list that stores the result.
$chart |
charting statistics arranged in a matrix. |
$standardized_values |
standardized values arranged in a matrix. |
References
You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.
Examples
data("data_example_long_surv")
result_pattern<-estimate_pattern_long_surv(
data_array=data_example_long_surv$data_array_IC,
time_matrix=data_example_long_surv$time_matrix_IC,
nobs=data_example_long_surv$nobs_IC,
starttime=data_example_long_surv$starttime_IC,
survtime=data_example_long_surv$survtime_IC,
survevent=data_example_long_surv$survevent_IC,
design_interval=data_example_long_surv$design_interval,
n_time_units=data_example_long_surv$n_time_units,
estimation_method="risk",
smoothing_method="local linear",
bw_beta=0.05,
bw_mean=0.1,
bw_var=0.1)
result_monitoring<-monitor_long_surv(
data_array_new=data_example_long_surv$data_array_OC,
time_matrix_new=data_example_long_surv$time_matrix_OC,
nobs_new=data_example_long_surv$nobs_OC,
pattern=result_pattern,
method="risk",
parameter=0.5)