monitor_long_md {DySS} | R Documentation |
Monitor Multivariate Longitudinal Data
Description
Monitor Multivariate Longitudinal Data
Usage
monitor_long_md(
data_array_new,
time_matrix_new,
nobs_new,
pattern,
side = "both",
method = "multivariate EWMA",
parameter = 0.5,
CL = Inf
)
Arguments
data_array_new |
an array of longitudinal observations. |
time_matrix_new |
a matrix of observation times. |
nobs_new |
an integer vector for number of observations. |
pattern |
the estimated regular longitudinal pattern |
side |
a string |
method |
a string |
parameter |
a numeric value. |
CL |
a numeric value |
Value
a list that stores the result.
$chart |
a numeric matrix, |
$SSijk |
a numeric array, the multivariate statistics used in the calculation of control charts.
|
$standardized_values |
a numeric array.
|
References
Qiu, P. and Xiang, D. (2015). Surveillance of cardiovascular diseases using a multivariate dynamic screening system. Statistics in Medicine, 34:2204-2221.
Li, J. and Qiu, P. (2017). Construction of an efficient multivariate dynamic screening system. Quality and Reliability Engineering International, 33(8):1969-1981.
You, L., Qiu, A., Huang, B., and Qiu, P. (2020). Early detection of severe juvenile idiopathic arthritis by sequential monitoring of patients' health-related quality of life scores. Biometrical Journal, 62(5).
Examples
data("data_example_long_md")
result_pattern<-estimate_pattern_long_md(
data_array=data_example_long_md$data_array_IC,
time_matrix=data_example_long_md$time_matrix_IC,
nobs=data_example_long_md$nobs_IC,
design_interval=data_example_long_md$design_interval,
n_time_units=data_example_long_md$n_time_units,
estimation_method="meanvar",
bw_mean=0.1,
bw_var=0.1)
result_monitoring<-monitor_long_md(
data_array_new=data_example_long_md$data_array_OC,
time_matrix_new=data_example_long_md$time_matrix_OC,
nobs_new=data_example_long_md$nobs_OC,
pattern=result_pattern,
side="both",
method="multivariate EWMA",
parameter=0.5)
result_ATS<-calculate_ATS(
chart_matrix=result_monitoring$chart_matrix,
time_matrix=data_example_long_md$time_matrix_OC,
nobs=data_example_long_md$nobs_OC,
starttime=rep(0,nrow(data_example_long_md$time_matrix_OC)),
endtime=rep(1,nrow(data_example_long_md$time_matrix_OC)),
design_interval=data_example_long_md$design_interval,
n_time_units=data_example_long_md$n_time_units,
CL=16.0)