evaluate_control_chart_two_groups {DySS} | R Documentation |
Evaluate Control Charts
Description
The function evaluate_control_chart_two_groups
evaluates control charts when
the in-control (IC) and out-of-control (OC) charting statistics are supplied separately in two matrices
chart_matrix_IC
and chart_matrix_OC
.
Usage
evaluate_control_chart_two_groups(
chart_matrix_IC,
time_matrix_IC,
nobs_IC,
starttime_IC,
endtime_IC,
chart_matrix_OC,
time_matrix_OC,
nobs_OC,
starttime_OC,
endtime_OC,
design_interval,
n_time_units,
time_unit,
no_signal_action = "omit"
)
Arguments
chart_matrix_IC , chart_matrix_OC |
charting statistics arranged as a numeric matrix. |
time_matrix_IC , time_matrix_OC |
observation times arranged as a numeric matrix. |
nobs_IC , nobs_OC |
number of observations arranged as an integer vector. |
starttime_IC , starttime_OC |
a numeric vector that gives the start times. |
endtime_IC , endtime_OC |
a numeric vector that gives the end times. |
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
no_signal_action |
a character value specifying how to set signal times when processes with no signals. |
Details
Evaluate Control Charts
Value
an list that stores the evaluation measures.
$thres |
A numeric vector. Threshold values for control limits. |
$FPR |
A numeric vector. False positive rates. |
$TPR |
A numeric vector. True positive rates. |
$ATS0 |
A numeric vector. In-control ATS. |
$ATS1 |
A numeric vector. Out-of-control ATS. |
References
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Qiu, P., Xia, Z., and You, L. (2020). Process monitoring ROC curve for evaluating dynamic screening methods. Technometrics, 62(2).
Examples
pattern<-estimate_pattern_long_1d(
data_matrix=data_example_long_1d$data_matrix_IC,
time_matrix=data_example_long_1d$time_matrix_IC,
nobs=data_example_long_1d$nobs_IC,
design_interval=data_example_long_1d$design_interval,
n_time_units=data_example_long_1d$n_time_units,
estimation_method="meanvar",
smoothing_method="local linear",
bw_mean=0.1,
bw_var=0.1)
chart_IC_output<-monitor_long_1d(
data_example_long_1d$data_matrix_IC,
data_example_long_1d$time_matrix_IC,
data_example_long_1d$nobs_IC,
pattern=pattern,side="upward",chart="CUSUM",
method="standard",parameter=0.2)
chart_OC_output<-monitor_long_1d(
data_example_long_1d$data_matrix_OC,
data_example_long_1d$time_matrix_OC,
data_example_long_1d$nobs_OC,
pattern=pattern,side="upward",chart="CUSUM",
method="standard",parameter=0.2)
output_evaluate<-evaluate_control_chart_two_groups(
chart_matrix_IC=chart_IC_output$chart[1:50,],
time_matrix_IC=data_example_long_1d$time_matrix_IC[1:50,],
nobs_IC=data_example_long_1d$nobs_IC[1:50],
starttime_IC=rep(0,50),
endtime_IC=rep(1,50),
chart_matrix_OC=chart_OC_output$chart[1:50,],
time_matrix_OC=data_example_long_1d$time_matrix_OC[1:50,],
nobs_OC=data_example_long_1d$nobs_OC[1:50],
starttime_OC=rep(0,50),
endtime_OC=rep(1,50),
design_interval=data_example_long_1d$design_interval,
n_time_units=data_example_long_1d$n_time_units,
no_signal_action="maxtime")