evaluate_control_chart_one_group {DySS} | R Documentation |
Evaluate Control Charts (in a single dataset)
Description
The function evaluate_control_chart_one_group
evaluates a control chart when
the in-control (IC) and out-of-control (OC) charting statistics are supplied together in one matrix chart_matrix
.
The logical vector status
indicates if the ith subject is IC or OC.
Usage
evaluate_control_chart_one_group(
chart_matrix,
time_matrix,
nobs,
starttime,
endtime,
status,
design_interval,
n_time_units,
time_unit,
no_signal_action = "omit"
)
Arguments
chart_matrix |
charting statistics arranged as a numeric matrix. |
time_matrix |
observation times arranged as a numeric matrix. |
nobs |
number of observations arranged as an integer vector. |
starttime |
a numeric vector.
|
endtime |
a numeric vector, times when monitoring end.
|
status |
a logical vector.
|
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
no_signal_action |
a character value specifying how to set signal times when processes with no signals. |
Details
Evaluate Control Charts
Value
an list that stores the evaluation measures.
$thres |
A numeric vector. Threshold values for control limits. |
$FPR |
A numeric vector. False positive rates. |
$TPR |
A numeric vector. True positive rates. |
$ATS0 |
A numeric vector. In-control ATS. |
$ATS1 |
A numeric vector. Out-of-control ATS. |
References
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Qiu, P., Xia, Z., and You, L. (2020). Process monitoring ROC curve for evaluating dynamic screening methods. Technometrics, 62(2).
Examples
result_pattern<-estimate_pattern_long_surv(
data_array=data_example_long_surv$data_array_IC,
time_matrix=data_example_long_surv$time_matrix_IC,
nobs=data_example_long_surv$nobs_IC,
starttime=data_example_long_surv$starttime_IC,
survtime=data_example_long_surv$survtime_IC,
survevent=data_example_long_surv$survevent_IC,
design_interval=data_example_long_surv$design_interval,
n_time_units=data_example_long_surv$n_time_units,
estimation_method="risk",
smoothing_method="local linear",
bw_beta=0.05,
bw_mean=0.1,
bw_var=0.1)
result_monitoring<-monitor_long_surv(
data_array_new=data_example_long_surv$data_array_IC,
time_matrix_new=data_example_long_surv$time_matrix_IC,
nobs_new=data_example_long_surv$nobs_IC,
pattern=result_pattern,
method="risk",
parameter=0.5)
output_evaluate<-evaluate_control_chart_one_group(
chart_matrix=result_monitoring$chart[1:200,],
time_matrix=data_example_long_surv$time_matrix_IC[1:200,],
nobs=data_example_long_surv$nobs_IC[1:200],
starttime=rep(0,200),
endtime=rep(1,200),
status=data_example_long_surv$survevent_IC[1:200],
design_interval=data_example_long_surv$design_interval,
n_time_units=data_example_long_surv$n_time_units,
no_signal_action="maxtime")