estimate_pattern_long_surv {DySS} | R Documentation |
Estimate the Pattern of Longitudinal and Survival Data
Description
Function estimate_pattern_long_surv
estimate the pattern of longitudinal and survival
data from a dataset of n subjects. This is usually the first step of dynamic screening.
The risk of a subject to event is quantified by a linear combination of longitudinal data by a Cox model.
The risk pattern can be described by mean and variance depending on the estimation method.
When the estimated pattern is used for monitoring new subjects, the collected data from new subjects are
compared to the estimated pattern for monitoring abnormality.
Usage
estimate_pattern_long_surv(
data_array,
time_matrix,
nobs,
starttime,
survtime,
survevent,
design_interval,
n_time_units,
time_unit,
estimation_method = "risk",
smoothing_method = "local linear",
bw_beta,
bw_mean,
bw_var
)
Arguments
data_array |
observed data arranged in a 3d array format. |
time_matrix |
observation times arranged in a numeric matrix format. |
nobs |
number of observations arranged as an integer vector. |
starttime |
a vector of entry times |
survtime |
a vector of survival times |
survevent |
a logical vector of survival events |
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
estimation_method |
a string. |
smoothing_method |
a string. |
bw_beta |
an integer value. |
bw_mean |
an integer value. |
bw_var |
an integer value. |
Details
Estimate the Pattern of Longitudinal and Survival Data
Value
an object that stores the estimated longitudinal pattern and model parameters.
If estimation_method="risk"
, returns an object of class pattern_long_surv_risk
.
$grid |
discretized design interval. |
$beta_est |
Estimated regression coefficients. |
$mean_risk_est |
Estimated mean function. |
$var_risk_est |
Estimated variance function. |
References
You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.
Examples
data("data_example_long_surv")
result_pattern<-estimate_pattern_long_surv(
data_array=data_example_long_surv$data_array_IC,
time_matrix=data_example_long_surv$time_matrix_IC,
nobs=data_example_long_surv$nobs_IC,
starttime=data_example_long_surv$starttime_IC,
survtime=data_example_long_surv$survtime_IC,
survevent=data_example_long_surv$survevent_IC,
design_interval=data_example_long_surv$design_interval,
n_time_units=data_example_long_surv$n_time_units,
estimation_method="risk",
smoothing_method="local linear",
bw_beta=0.05,
bw_mean=0.1,
bw_var=0.1)