calculate_signal_times {DySS} | R Documentation |
Calculate Signal Times
Description
The function calculate_signal_times
calculates the time to signals given
a control chart matrix and a specified control limit (CL).
Usage
calculate_signal_times(
chart_matrix,
time_matrix,
nobs,
starttime,
endtime,
design_interval,
n_time_units,
time_unit,
CL
)
Arguments
chart_matrix |
a matrix of charting statistic values. |
time_matrix |
a matrix of observation times. |
nobs |
number of observations arranged as an integer vector. |
starttime |
a vector of times from the start of monitoring. |
endtime |
a vector of times from the start of monitoring. |
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
CL |
a numeric value specifying the control limit. |
Details
Calculate Signal Times
Value
A list of two vectors:
$signal_times |
times to signals, a numeric vector. |
$signals |
whether the subject received signals, a logical vector. |
References
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Qiu, P., Xia, Z., and You, L. (2020). Process monitoring roc curve for evaluating dynamic screening methods. Technometrics, 62(2).
Examples
data("data_example_long_1d")
result_pattern<-estimate_pattern_long_1d(
data_matrix=data_example_long_1d$data_matrix_IC,
time_matrix=data_example_long_1d$time_matrix_IC,
nobs=data_example_long_1d$nobs_IC,
design_interval=data_example_long_1d$design_interval,
n_time_units=data_example_long_1d$n_time_units,
estimation_method="meanvar",
smoothing_method="local linear",
bw_mean=0.1,
bw_var=0.1)
result_monitoring<-monitor_long_1d(
data_matrix_new=data_example_long_1d$data_matrix_OC,
time_matrix_new=data_example_long_1d$time_matrix_OC,
nobs_new=data_example_long_1d$nobs_OC,
pattern=result_pattern,
side="upward",
chart="CUSUM",
method="standard",
parameter=0.5)
result_signal_times<-calculate_signal_times(
chart_matrix=result_monitoring$chart,
time_matrix=data_example_long_1d$time_matrix_OC,
nobs=data_example_long_1d$nobs_OC,
starttime=rep(0,nrow(data_example_long_1d$time_matrix_OC)),
endtime=rep(1,nrow(data_example_long_1d$time_matrix_OC)),
design_interval=data_example_long_1d$design_interval,
n_time_units=data_example_long_1d$n_time_units,
CL=2.0)