| DoubleMLData {DoubleML} | R Documentation |
Double machine learning data-backend
Description
Double machine learning data-backend.
DoubleMLData objects can be initialized from a
data.table. Alternatively DoubleML provides
functions to initialize from a collection of matrix objects or
a data.frame. The following functions can be used to create a new
instance of DoubleMLData.
-
DoubleMLData$new()for initialization from adata.table. -
double_ml_data_from_matrix()for initialization frommatrixobjects, -
double_ml_data_from_data_frame()for initialization from adata.frame.
Active bindings
all_variables(
character())
All variables available in the dataset.d_cols(
character())
The treatment variable(s).data(
data.table)
Data object.data_model(
data.table)
Internal data object that implements the causal model as specified by the user viay_col,d_cols,x_colsandz_cols.n_instr(
NULL,integer(1))
The number of instruments.n_obs(
integer(1))
The number of observations.n_treat(
integer(1))
The number of treatment variables.other_treat_cols(
NULL,character())
Ifuse_other_treat_as_covariateisTRUE,other_treat_colsare the treatment variables that are not "active" in the multiple-treatment case. These variables then are internally added to the covariatesx_colsduring the fitting stage. Ifuse_other_treat_as_covariateisFALSE,other_treat_colsisNULL.treat_col(
character(1))
"Active" treatment variable in the multiple-treatment case.use_other_treat_as_covariate(
logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default isTRUE.x_cols(
NULL,character())
The covariates. IfNULL, all variables (columns ofdata) which are neither specified as outcome variabley_col, nor as treatment variablesd_cols, nor as instrumental variablesz_colsare used as covariates. Default isNULL.y_col(
character(1))
The outcome variable.z_cols(
NULL,character())
The instrumental variables. Default isNULL.
Methods
Public methods
Method new()
Creates a new instance of this R6 class.
Usage
DoubleMLData$new( data = NULL, x_cols = NULL, y_col = NULL, d_cols = NULL, z_cols = NULL, use_other_treat_as_covariate = TRUE )
Arguments
data(
data.table,data.frame())
Data object.x_cols(
NULL,character())
The covariates. IfNULL, all variables (columns ofdata) which are neither specified as outcome variabley_col, nor as treatment variablesd_cols, nor as instrumental variablesz_colsare used as covariates. Default isNULL.y_col(
character(1))
The outcome variable.d_cols(
character())
The treatment variable(s).z_cols(
NULL,character())
The instrumental variables. Default isNULL.use_other_treat_as_covariate(
logical(1))
Indicates whether in the multiple-treatment case the other treatment variables should be added as covariates. Default isTRUE.
Method print()
Print DoubleMLData objects.
Usage
DoubleMLData$print()
Method set_data_model()
Setter function for data_model. The function implements the causal
model as specified by the user via y_col, d_cols, x_cols and
z_cols and assigns the role for the treatment variables in the
multiple-treatment case.
Usage
DoubleMLData$set_data_model(treatment_var)
Arguments
treatment_var(
character())
Active treatment variable that will be set totreat_col.
Method clone()
The objects of this class are cloneable with this method.
Usage
DoubleMLData$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
library(DoubleML)
df = make_plr_CCDDHNR2018(return_type = "data.table")
obj_dml_data = DoubleMLData$new(df,
y_col = "y",
d_cols = "d")