| llogis {Distributacalcul} | R Documentation |
Loglogistic Distribution
Description
Loglogistic distribution with shape parameter \tau and scale
parameter \lambda.
Usage
dLlogis(x, shape, rate = 1/scale, scale = 1/rate)
pLlogis(q, shape, rate = 1/scale, scale = 1/rate, lower.tail = TRUE)
expValLlogis(shape, rate = 1/scale, scale = 1/rate)
varLlogis(shape, rate = 1/scale, scale = 1/rate)
kthMomentLlogis(k, shape, rate = 1/scale, scale = 1/rate)
expValLimLlogis(d, shape, rate = 1/scale, scale = 1/rate)
expValTruncLlogis(d, shape, rate = 1/scale, scale = 1/rate, less.than.d = TRUE)
stopLossLlogis(d, shape, rate = 1/scale, scale = 1/rate)
meanExcessLlogis(d, shape, rate = 1/scale, scale = 1/rate)
VatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
TVatRLlogis(kap, shape, rate = 1/scale, scale = 1/rate)
Arguments
x, q |
vector of quantiles. |
shape |
shape parameter |
rate |
rate parameter |
scale |
alternative parameterization to the rate parameter, scale = 1 / rate. |
lower.tail |
logical; if TRUE (default), probabilities are
|
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The loglogistic distribution with shape parameter \tau and scale parameter
\lambda has density:
\frac{\tau \lambda^\tau x^{\tau -1}}{(\lambda^{\tau }+x^{\tau })^{2}}
for x \in \mathcal{R}^+, \lambda, \tau > 0.
Value
Function :
-
dLlogisgives the probability density function (PDF). -
pLlogisgives the cumulative density function (CDF). -
expValLlogisgives the expected value. -
varLlogisgives the variance. -
kthMomentLlogisgives the kth moment. -
expValLimLlogisgives the limited mean. -
expValTruncLlogisgives the truncated mean. -
stopLossLlogisgives the stop-loss. -
meanExcessLlogisgives the mean excess loss. -
VatRLlogisgives the Value-at-Risk. -
TVatRLlogisgives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Examples
dLlogis(x = 2, shape = 2, scale = 4)
# With scale parameter
pLlogis(q = 3, shape = 3, scale = 5)
# With rate parameter
pLlogis(q = 3, shape = 3, rate = 0.2)
# Survival function
pLlogis(q = 3, shape = 3, rate = 0.2, lower.tail = FALSE)
expValLlogis(shape = 2, scale = 4)
varLlogis(shape = 3, scale = 4)
kthMomentLlogis(k = 3, shape = 5, scale = 4)
expValLimLlogis(d = 2, shape = 2, scale = 4)
# With rate parameter
expValTruncLlogis(d = 2, shape = 2, scale = 4)
# Values greater than d
expValTruncLlogis(d = 2, shape = 2, scale = 4, less.than.d = FALSE)
stopLossLlogis(d = 2, shape = 2, scale = 4)
meanExcessLlogis(d = 3, shape = 2, scale = 4)
# With scale parameter
VatRLlogis(kap = .2, shape = 2, scale = 4)
# With rate parameter
VatRLlogis(kap = .2, shape = 2, rate = 0.25)
# With scale parameter
TVatRLlogis(kap = .2, shape = 3, scale = 4)
# With rate parameter
TVatRLlogis(kap = .2, shape = 3, rate = 0.25)