Lnorm {Distributacalcul} | R Documentation |
Lognormal Distribution
Description
Lognormal distribution with mean \mu
and variance \sigma
.
Usage
expValLnorm(meanlog, sdlog)
varLnorm(meanlog, sdlog)
kthMomentLnorm(k, meanlog, sdlog)
expValLimLnorm(d, meanlog, sdlog)
expValTruncLnorm(d, meanlog, sdlog, less.than.d = TRUE)
stopLossLnorm(d, meanlog, sdlog)
meanExcessLnorm(d, meanlog, sdlog)
VatRLnorm(kap, meanlog, sdlog)
TVatRLnorm(kap, meanlog, sdlog)
Arguments
meanlog |
location parameter |
sdlog |
standard deviation |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
Details
The Log-normal distribution with mean \mu
and standard deviation
\sigma
has density:
\frac{1}{\sqrt{2\pi}\sigma x}\textrm{e}^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2}
for x \in \mathcal{R}^{+}
, \mu \in \mathcal{R}, \sigma > 0
.
Value
Function :
-
expValLnorm
gives the expected value. -
varLnorm
gives the variance. -
kthMomentLnorm
gives the kth moment. -
expValLimLnorm
gives the limited mean. -
expValTruncLnorm
gives the truncated mean. -
stopLossLnorm
gives the stop-loss. -
meanExcessLnorm
gives the mean excess loss. -
VatRLnorm
gives the Value-at-Risk. -
TVatRLnorm
gives the Tail Value-at-Risk.
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRLnorm is a wrapper of the qlnorm
function from the stats package.
Examples
expValLnorm(meanlog = 3, sdlog = 5)
varLnorm(meanlog = 3, sdlog = 5)
kthMomentLnorm(k = 2, meanlog = 3, sdlog = 5)
expValLimLnorm(d = 2, meanlog = 2, sdlog = 5)
expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5)
# Values greater than d
expValTruncLnorm(d = 2, meanlog = 2, sdlog = 5, less.than.d = FALSE)
stopLossLnorm(d = 2, meanlog = 2, sdlog = 5)
meanExcessLnorm(d = 2, meanlog = 2, sdlog = 5)
VatRLnorm(kap = 0.8, meanlog = 3, sdlog = 5)
TVatRLnorm(kap = 0.8, meanlog = 2, sdlog = 5)