Beta {Distributacalcul} | R Documentation |
Beta Distribution
Description
Beta distribution with shape parameters \alpha
and \beta
.
Usage
expValBeta(shape1, shape2)
varBeta(shape1, shape2)
kthMomentBeta(k, shape1, shape2)
expValLimBeta(d, shape1, shape2)
expValTruncBeta(d, shape1, shape2, less.than.d = TRUE)
stopLossBeta(d, shape1, shape2)
meanExcessBeta(d, shape1, shape2)
VatRBeta(kap, shape1, shape2)
TVatRBeta(kap, shape1, shape2)
mgfBeta(t, shape1, shape2, k0)
Arguments
shape1 |
shape parameter |
shape2 |
shape parameter |
k |
kth-moment. |
d |
cut-off value. |
less.than.d |
logical; if |
kap |
probability. |
t |
t. |
k0 |
point up to which to sum the distribution for the approximation. |
Details
The Beta distribution with shape parameters \alpha
and
\beta
has density:
f\left(x\right) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) %
\Gamma(\beta)} x^{\alpha - 1} (1 - x)^(\beta - 1)
for x \in [0, 1]
, \alpha, \beta > 0
.
Value
Function :
-
expValBeta
gives the expected value. -
varBeta
gives the variance. -
kthMomentBeta
gives the kth moment. -
expValLimBeta
gives the limited mean. -
expValTruncBeta
gives the truncated mean. -
stopLossBeta
gives the stop-loss. -
meanExcessBeta
gives the mean excess loss. -
VatRBeta
gives the Value-at-Risk. -
TVatRBeta
gives the Tail Value-at-Risk. -
mgfBeta
gives the moment generating function (MGF).
Invalid parameter values will return an error detailing which parameter is problematic.
Note
Function VatRBeta is a wrapper for the qbeta
function from the stats package.
Examples
expValBeta(shape1 = 3, shape2 = 5)
varBeta(shape1 = 4, shape2 = 5)
kthMomentBeta(k = 3, shape1 = 4, shape2 = 5)
expValLimBeta(d = 0.3, shape1 = 4, shape2 = 5)
expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5)
# Values less than d
expValTruncBeta(d = 0.4, shape1 = 4, shape2 = 5, less.than.d = FALSE)
stopLossBeta(d = 0.3, shape1 = 4, shape2 = 5)
meanExcessBeta(d = .3, shape1 = 4, shape2 = 5)
VatRBeta(kap = .99, shape1 = 4, shape2 = 5)
TVatRBeta(kap = .99, shape1 = 4, shape2 = 5)
mgfBeta(t = 1, shape1 = 3, shape2 = 5, k0 = 1E2)