Edweibull3 {DiscreteWeibull} | R Documentation |
Expected values
Description
First and second order moments for the type 3 discrete Weibull distribution
Usage
Edweibull3(c, beta, eps = 1e-04)
E2dweibull3(c, beta, eps = 1e-04)
Arguments
c |
first parameter |
beta |
second parameter |
eps |
error threshold for the numerical computation of the expected value |
Details
The expected values are numerically computed considering a truncated support: integer values smaller than or equal to
2F^{-1}(1-eps;c,\beta))
, where F^{-1}
is the inverse of the cumulative distribution function (implemented by the function qdweibull3
)
Value
the (approximate) expected values of the discrete Weibull distribution:
Edweibull3
gives the first order moment, E2dweibull3
the second order moment
Author(s)
Alessandro Barbiero
Examples
c <- 0.4
beta <- 0.25
Edweibull3(c,beta)
c <- 0.4
beta <- -0.75
Edweibull3(c, beta) # may require too much time
Edweibull3(c, beta, eps=0.001) # try with a smaller eps->worse approximation
c <- rep(0.1, 11)
beta <- (0:10)/10
Edweibull3(c, beta)
c <- rep(0.5, 11)
beta <- (-5:5)/10
Edweibull3(c,beta)
# E2dweibull3
c <- 0.4
beta <- 0.25
E2dweibull3(c, beta)
c <- rep(0.1, 11)
beta <- (0:10)/10
Edweibull3(c, beta)
c <- rep(0.8, 11)
beta <- (-5:5)/11
E2dweibull3(c, beta)
[Package DiscreteWeibull version 1.1 Index]