estdlaplace {DiscreteLaplace} | R Documentation |
Sample estimation for the DSL
Description
The function provides the maximum likelihood estimates for the parameters of the DSL and the estimate of the inverse of the Fisher information matrix. The method of moments estimates of p
and q
coincide with the maximum likelihood estimates.
Usage
estdlaplace(x)
Arguments
x |
a vector of observations from the DSL |
Details
See the reference.
If
\bar{x}^{+}=\frac{1}{n}\sum_{i=1}^n x_i^{+}
, \bar{x}^{-}=\frac{1}{n}\sum_{i=1}^n x_i^{-}
where x^{+}
and x^{-}
are the positive and the negative parts of x
, respectively: x^{+}=x
if x\geq 0
and zero otherwise, x^{-}=(-x)^{+}
, then
\hat{q}=\frac{2\bar{x}^{-}(1+\bar{x})}{1+2\bar{x}^{-}\bar{x}+\sqrt{1+4\bar{x}^{-}\bar{x}^{+}}}
,
\hat{p}=\frac{\hat{q}+\bar{x}(1-\hat{q})}{1+\bar{x}(1-\hat{q})}
when \bar{x}\geq 0
and
\hat{p}=\frac{2\bar{x}^{+}(1-\bar{x})}{1-2\bar{x}^{+}\bar{x}+\sqrt{1+4\bar{x}^{-}\bar{x}^{+}}}
,
\hat{q}=\frac{\hat{p}-\bar{x}(1-\hat{p})}{1-\bar{x}(1-\hat{p})}
when \bar{x}\leq 0
.
Value
A list comprising
hatp |
estimate of |
hatq |
estimate of |
hatSigma |
estimate of the inverse of the Fisher information matrix |
Author(s)
Alessandro Barbiero, Riccardo Inchingolo
References
T. J. Kozubowski, S. Inusah (2006) A skew Laplace distribution on integers, Annals of the Institute of Statistical Mathematics, 58: 555-571
See Also
Examples
p<-0.6
q<-0.3
n<-20
x<-rdlaplace(n, p, q)
est<-estdlaplace(x)
est[1]
est[2]
est[3]
# increase n
n<-100
x<-rdlaplace(n, p, q)
est<-estdlaplace(x)
est[1]
est[2]
est[3]
# swap the parameters
x<-rdlaplace(n, q, p)
est<-estdlaplace(x)
est[1]
est[2]
est[3]