ddlaplace2 {DiscreteLaplace} | R Documentation |
Probability mass function of the ADSL
Description
The function computes the probability mass function, the cumulative distribution function, the quantile function of the ADSL and provides random generation of samples from the same model
Usage
ddlaplace2(x, p, q)
palaplace2(x, p, q)
pdlaplace2(x, p, q)
qdlaplace2(prob, p, q)
rdlaplace2(n, p, q)
Arguments
x |
vector of quantiles |
p |
the first parameter |
q |
the second parameter |
prob |
vector of probabilities |
n |
number of observations |
Details
The probability mass funtion of the ADSL distribution is given by:
P(X=x;p,q)=\frac{\log p}{\log (pq)}q^{-(x+1)}(1-q)
for x=\dots, -2, -1
and
P(X=x;p,q)=\frac{\log q}{\log (pq)}p^{x}(1-p)
for x=0, 1, 2, \dots
Its cumulative distribution function is:
F(x;p,q)=\frac{\log p}{\log (pq)}q^{-(\lfloor x \rfloor+1)}
for x<0
and
F(x;p,q)=1-\frac{\log q}{\log (pq)}p^{(\lfloor x \rfloor+1)}
for x\geq 0
Value
ddlaplace2
returns the probability of x
; pdlaplace2
returns the cumulate probability of x
; qdlaplace2
returns the prob
- quantile; rdlaplace2
returns a random sample of size n
from ADSL.
Author(s)
Alessandro Barbiero, Riccardo Inchingolo
References
A. Barbiero, An alternative discrete Laplace distribution, Statistical Methodology, 16: 47-67
See Also
Examples
# pmf
p <- 0.7
q <- 0.45
x <- -10:10
prob <- ddlaplace2(x, p, q)
plot(x, prob, type="h")
# swap the parameters
prob <- ddlaplace2(x, q, p)
plot(x, prob, type="h")
# letting p and q be vectors...
ddlaplace2(-4:4, 1:9/10, 9:1/10)
# cdf
pdlaplace2(x, p, q)
pdlaplace2(pi, p, q)
pdlaplace2(floor(pi), p, q)
# quantile function
qdlaplace(1:9/10, p, q)
# random generation
y <- rdlaplace2(n=1000, p, q)
plot(table(y))