kde_dir {DirStats} | R Documentation |
Directional kernel density estimator
Description
Kernel density estimation with directional data as in the estimator of Bai et al. (1988).
Usage
kde_dir(x, data, h, L = NULL)
c_h(h, q, L = NULL)
lambda_L(L = NULL, q)
b_L(L = NULL, q)
d_L(L = NULL, q)
Arguments
x |
evaluation points, a matrix of size |
data |
directional data, a matrix of size |
h |
bandwidth, a scalar for |
L |
kernel function. Set internally to |
q |
dimension of |
Details
data
is not checked to have unit norm, so the user must be careful.
When L = NULL
, faster FORTRAN code is employed.
Value
kde_dir
returns a vector of size nx
with the
evaluated kernel density estimator. c_h
returns the normalizing
constant for the kernel, a vector of length length(h)
.
lambda_L
, b_L
, and d_L
return moments of L
.
References
Bai, Z. D., Rao, C. R., and Zhao, L. C. (1988). Kernel estimators of density function of directional data. Journal of Multivariate Analysis, 27(1):24–39. doi:10.1016/0047-259X(88)90113-3
Examples
# Sample
n <- 50
q <- 3
samp <- rotasym::r_vMF(n = n, mu = c(1, rep(0, q)), kappa = 2)
# Evaluation points
x <- rbind(diag(1, nrow = q + 1), diag(-1, nrow = q + 1))
# kde_dir
kde_dir(x = x, data = samp, h = 0.5, L = NULL)
kde_dir(x = x, data = samp, h = 0.5, L = function(x) exp(-x))
# c_h
c_h(h = 0.5, q = q, L = NULL)
c_h(h = 0.5, q = q, L = function(x) exp(-x))
# b_L
b_L(L = NULL, q = q)
b_L(L = function(x) exp(-x), q = q)
# d_L
d_L(L = NULL, q = q)
d_L(L = function(x) exp(-x), q = q)
# lambda_L
lambda_L(L = NULL, q = q)
lambda_L(L = function(x) exp(-x), q = q)