EQI {DiceOptim}R Documentation

Expected Quantile Improvement

Description

Evaluation of the Expected Quantile Improvement (EQI) criterion.

Usage

EQI(
  x,
  model,
  new.noise.var = 0,
  beta = 0.9,
  q.min = NULL,
  type = "UK",
  envir = NULL
)

Arguments

x

the input vector at which one wants to evaluate the criterion

model

a Kriging model of "km" class

new.noise.var

(scalar) noise variance of the future observation. Default value is 0 (noise-free observation).

beta

Quantile level (default value is 0.9)

q.min

Best kriging quantile. If not provided, this quantity is evaluated.

type

Kriging type: "SK" or "UK"

envir

environment for saving intermediate calculations and reusing them within EQI.grad

Value

Expected Quantile Improvement

Author(s)

Victor Picheny

David Ginsbourger

References

Picheny, V., Ginsbourger, D., Richet, Y., Caplin, G. (2013). Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics, 55(1), 2-13.

Examples



##########################################################################
###    EQI SURFACE ASSOCIATED WITH AN ORDINARY KRIGING MODEL        ####
### OF THE BRANIN FUNCTION KNOWN AT A 12-POINT LATIN HYPERCUBE DESIGN ####
##########################################################################

set.seed(421)

# Set test problem parameters
doe.size <- 12
dim <- 2
test.function <- get("branin2")
lower <- rep(0,1,dim)
upper <- rep(1,1,dim)
noise.var <- 0.2

# Generate DOE and response
doe <- as.data.frame(matrix(runif(doe.size*dim),doe.size))
y.tilde <- rep(0, 1, doe.size)
for (i in 1:doe.size)  {
y.tilde[i] <- test.function(doe[i,]) + sqrt(noise.var)*rnorm(n=1)
}
y.tilde <- as.numeric(y.tilde)

# Create kriging model
model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
            covtype="gauss", noise.var=rep(noise.var,1,doe.size), 
	    lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))

# Compute actual function and criterion on a grid
n.grid <- 12 # Change to 21 for a nicer picture
x.grid <- y.grid <- seq(0,1,length=n.grid)
design.grid <- expand.grid(x.grid, y.grid)
nt <- nrow(design.grid)

crit.grid <- apply(design.grid, 1, EQI, model=model, new.noise.var=noise.var, beta=.9)
func.grid <- apply(design.grid, 1, test.function)

# Compute kriging mean and variance on a grid
names(design.grid) <- c("V1","V2")
pred <- predict(model, newdata=design.grid, type="UK", checkNames = FALSE)
mk.grid <- pred$m
sk.grid <- pred$sd

# Plot actual function
z.grid <- matrix(func.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Actual function");
points(model@X[,1],model@X[,2],pch=17,col="blue"); 
axis(1); axis(2)})

# Plot Kriging mean
z.grid <- matrix(mk.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Kriging mean");
points(model@X[,1],model@X[,2],pch=17,col="blue"); 
axis(1); axis(2)})

# Plot Kriging variance
z.grid <- matrix(sk.grid^2, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Kriging variance");
points(model@X[,1],model@X[,2],pch=17,col="blue"); 
axis(1); axis(2)})

# Plot EQI criterion
z.grid <- matrix(crit.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("EQI");
points(model@X[,1],model@X[,2],pch=17,col="blue"); 
axis(1); axis(2)})


[Package DiceOptim version 2.1.1 Index]