EQI {DiceOptim} | R Documentation |
Expected Quantile Improvement
Description
Evaluation of the Expected Quantile Improvement (EQI) criterion.
Usage
EQI(
x,
model,
new.noise.var = 0,
beta = 0.9,
q.min = NULL,
type = "UK",
envir = NULL
)
Arguments
x |
the input vector at which one wants to evaluate the criterion |
model |
a Kriging model of "km" class |
new.noise.var |
(scalar) noise variance of the future observation. Default value is 0 (noise-free observation). |
beta |
Quantile level (default value is 0.9) |
q.min |
Best kriging quantile. If not provided, this quantity is evaluated. |
type |
Kriging type: "SK" or "UK" |
envir |
environment for saving intermediate calculations and reusing them within EQI.grad |
Value
Expected Quantile Improvement
Author(s)
Victor Picheny
David Ginsbourger
References
Picheny, V., Ginsbourger, D., Richet, Y., Caplin, G. (2013). Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics, 55(1), 2-13.
Examples
##########################################################################
### EQI SURFACE ASSOCIATED WITH AN ORDINARY KRIGING MODEL ####
### OF THE BRANIN FUNCTION KNOWN AT A 12-POINT LATIN HYPERCUBE DESIGN ####
##########################################################################
set.seed(421)
# Set test problem parameters
doe.size <- 12
dim <- 2
test.function <- get("branin2")
lower <- rep(0,1,dim)
upper <- rep(1,1,dim)
noise.var <- 0.2
# Generate DOE and response
doe <- as.data.frame(matrix(runif(doe.size*dim),doe.size))
y.tilde <- rep(0, 1, doe.size)
for (i in 1:doe.size) {
y.tilde[i] <- test.function(doe[i,]) + sqrt(noise.var)*rnorm(n=1)
}
y.tilde <- as.numeric(y.tilde)
# Create kriging model
model <- km(y~1, design=doe, response=data.frame(y=y.tilde),
covtype="gauss", noise.var=rep(noise.var,1,doe.size),
lower=rep(.1,dim), upper=rep(1,dim), control=list(trace=FALSE))
# Compute actual function and criterion on a grid
n.grid <- 12 # Change to 21 for a nicer picture
x.grid <- y.grid <- seq(0,1,length=n.grid)
design.grid <- expand.grid(x.grid, y.grid)
nt <- nrow(design.grid)
crit.grid <- apply(design.grid, 1, EQI, model=model, new.noise.var=noise.var, beta=.9)
func.grid <- apply(design.grid, 1, test.function)
# Compute kriging mean and variance on a grid
names(design.grid) <- c("V1","V2")
pred <- predict(model, newdata=design.grid, type="UK", checkNames = FALSE)
mk.grid <- pred$m
sk.grid <- pred$sd
# Plot actual function
z.grid <- matrix(func.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Actual function");
points(model@X[,1],model@X[,2],pch=17,col="blue");
axis(1); axis(2)})
# Plot Kriging mean
z.grid <- matrix(mk.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Kriging mean");
points(model@X[,1],model@X[,2],pch=17,col="blue");
axis(1); axis(2)})
# Plot Kriging variance
z.grid <- matrix(sk.grid^2, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("Kriging variance");
points(model@X[,1],model@X[,2],pch=17,col="blue");
axis(1); axis(2)})
# Plot EQI criterion
z.grid <- matrix(crit.grid, n.grid, n.grid)
filled.contour(x.grid,y.grid, z.grid, nlevels=50, color = rainbow,
plot.axes = {title("EQI");
points(model@X[,1],model@X[,2],pch=17,col="blue");
axis(1); axis(2)})
[Package DiceOptim version 2.1.1 Index]