Hayman {DiallelAnalysisR} | R Documentation |
Diallel Analysis using Hayman Approach
Description
Hayman
is used for performing Diallel Analysis using Hayman's Approach.
Usage
Hayman(y, Rep, Cross1, Cross2, data)
Arguments
y |
Numeric Response Vector |
Rep |
Replicate as factor |
Cross1 |
Cross 1 as factor |
Cross2 |
Cross 2 as factor |
data |
A |
Details
Diallel Analysis using Haymans's approach.
Value
Means Means
ANOVA Analysis of Variance (ANOVA) table
Genetic.Components Genetic Components
Effects Effects of Crosses
StdErr Standard Errors of Crosses
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
References
Hayman, B. I. (1954 a) The Theory and Analysis of Diallel Crosses. Genetics, 39, 789–809.
Hayman, B. I. (1954 b) The Analysis of Variance of Diallel Tables. Biometrics, 10, 235–244.
Hayman, B. I. (1957) Interaction, Heterosis and Diallel Crosses. Genetics, 42, 336–355.
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
See Also
Examples
#------------------------------------------
## Diallel Analysis with Haymans's Aproach
#------------------------------------------
Hayman1Data <-
Hayman(
y = Yield
, Rep = Rep
, Cross1 = Cross1
, Cross2 = Cross2
, data = HaymanData
)
Hayman1Data
names(Hayman1Data)
Hayman1DataMeans <- Hayman1Data$Means
Hayman1DataANOVA <- Hayman1Data$ANOVA
Hayman1DataWr.Vr.Table <- Hayman1Data$Wr.Vr.Table
Hayman1DataComponents.of.Variation <- Hayman1Data$Components.of.Variation
Hayman1DataOther.Parameters <- Hayman1Data$Other.Parameters
Hayman1DataFr <- Hayman1Data$Fr
#----------------
# Wr-Vr Graph
#----------------
VOLO <- Hayman1Data$VOLO
In.Value <- Hayman1Data$In.Value
a <- Hayman1Data$a
b <- Hayman1Data$b
Wr.Vr <- Hayman1Data$Wr.Vr.Table
library(ggplot2)
ggplot(data=data.frame(x=c(0, max(In.Value, Wr.Vr$Vr, Wr.Vr$Wr, Wr.Vr$Wrei))), aes(x)) +
stat_function(fun=function(x) {sqrt(x*VOLO)}, color="blue") +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_abline(intercept = a, slope = b) +
geom_abline(intercept = mean(Wr.Vr$Wr)-mean(Wr.Vr$Vr), slope = 1) +
geom_segment(aes(
x = mean(Wr.Vr$Vr)
, y = min(0, mean(Wr.Vr$Wr))
, xend = mean(Wr.Vr$Vr)
, yend = max(0, mean(Wr.Vr$Wr))
)
, color = "green"
) +
geom_segment(aes(
x = min(0, mean(Wr.Vr$Vr))
, y = mean(Wr.Vr$Wr)
, xend = max(0, mean(Wr.Vr$Vr))
, yend = mean(Wr.Vr$Wr)
)
, color = "green"
) +
lims(x=c(min(0, Wr.Vr$Vr, Wr.Vr$Wrei), max(Wr.Vr$Vr, Wr.Vr$Wrei)),
y=c(min(0, Wr.Vr$Wr, Wr.Vr$Wrei), max(Wr.Vr$Wr, Wr.Vr$Wri))
) +
labs(
x = expression(V[r])
, y = expression(W[r])
, title = expression(paste(W[r]-V[r] , " Graph"))
) +
theme_bw()