GenPareto {DescTools} | R Documentation |
The Generalized Pareto Distribution
Description
Density function, distribution function, quantile function and random generation for the generalized Pareto distribution (GenPareto) with location, scale and shape parameters.
Usage
dGenPareto(x, loc=0, scale=1, shape=0, log = FALSE)
pGenPareto(q, loc=0, scale=1, shape=0, lower.tail = TRUE)
qGenPareto(p, loc=0, scale=1, shape=0, lower.tail = TRUE)
rGenPareto(n, loc=0, scale=1, shape=0)
Arguments
x , q |
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of observations. |
loc , scale , shape |
Location, scale and shape parameters; the
|
log |
Logical; if |
lower.tail |
Logical; if |
Details
The generalized Pareto distribution function (Pickands, 1975) with
parameters loc = a
, scale = b
and
shape = s
is
G(z) = 1 - \{1+s(z-a)/b\}^{-1/s}
for 1+s(z-a)/b > 0
and z > a
, where b > 0
.
If s = 0
the distribution is defined by continuity.
Value
dGenPareto
gives the density function, pGenPareto
gives the
distribution function, qGenPareto
gives the quantile function,
and rGenPareto
generates random deviates.
Author(s)
Alec Stephenson <alec_stephenson@hotmail.com>
References
Pickands, J. (1975) Statistical inference using Extreme Order statistics. Annals of Statistics, 3, 119–131.
See Also
Examples
dGenPareto(2:4, 1, 0.5, 0.8)
pGenPareto(2:4, 1, 0.5, 0.8)
qGenPareto(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8)
rGenPareto(6, 1, 0.5, 0.8)
p <- (1:9)/10
pGenPareto(qGenPareto(p, 1, 2, 0.8), 1, 2, 0.8)
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9