metalearner_ensemble {DeepLearningCausal} | R Documentation |
metalearner_ensemble
Description
metalearner_ensemble
implements the S-learner and T-learner for
estimating CATE using the super learner ensemble method. The super learner in
this case includes the following machine learning algorithms:
extreme gradient boosting, glmnet (elastic net regression), random forest and
neural nets.
Usage
metalearner_ensemble(
data,
cov.formula,
treat.var,
meta.learner.type,
SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet"),
nfolds = 5,
binary.outcome = FALSE
)
Arguments
data |
|
cov.formula |
formula description of the model y ~ x(list of covariates) |
treat.var |
string for the name of treatment variable. |
meta.learner.type |
string specifying is the S-learner and
|
SL.learners |
vector for super learner ensemble that includes extreme gradient boosting, glmnet, random forest, and neural nets. |
nfolds |
number of folds for cross-validation. Currently supports up to 5 folds. |
binary.outcome |
logical specifying predicted outcome variable will take binary values or proportions. |
Value
metalearner_ensemble
of predicted outcome values and CATEs estimated by the meta
learners for each observation.
Examples
# load dataset
data(exp_data)
#load SuperLearner package
library(SuperLearner)
# estimate CATEs with S Learner
set.seed(123456)
slearner <- metalearner_ensemble(cov.formula = support_war ~ age +
income + employed + job_loss,
data = exp_data,
treat.var = "strong_leader",
meta.learner.type = "S.Learner",
SL.learners = c("SL.glm"),
nfolds = 5,
binary.outcome = FALSE)
print(slearner)
# estimate CATEs with T Learner
set.seed(123456)
tlearner <- metalearner_ensemble(cov.formula = support_war ~ age + income +
employed + job_loss,
data = exp_data,
treat.var = "strong_leader",
meta.learner.type = "T.Learner",
SL.learners = c("SL.xgboost","SL.ranger",
"SL.nnet"),
nfolds = 5,
binary.outcome = FALSE)
print(tlearner)