dataRWAR {DeCAFS} | R Documentation |
Generate a Random Walk + AR realization
Description
Generate a Realization from the RWAR model (check the references for further details).
y_t = \mu_t + \epsilon_t
where
\mu_t = \mu_{t-1} + \eta_t + \delta_t, \quad \eta_t \sim N(0, \sigma_\eta^2), \ \delta_t \ \in R
and
\epsilon_t = \phi \epsilon_{t-1} + \nu_t \quad \nu_t \sim N(0, \sigma_\nu^2)
Usage
dataRWAR(
n = 1000,
sdEta = 0,
sdNu = 1,
phi = 0,
type = c("none", "up", "updown", "rand1"),
nbSeg = 20,
jumpSize = 1
)
Arguments
n |
The length of the sequence of observations. |
sdEta |
The standard deviation of the Random Walk Component on the signal drift |
sdNu |
The standard deviation of the Autocorrelated noise |
phi |
The autocorrelation parameter |
type |
Possible change scenarios for the jump structure (default: |
nbSeg |
Number of segments |
jumpSize |
Maximum magnitude of a change |
Value
A list containing:
y
the data sequence,
signal
the underlying signal without the superimposed AR(1) noise,
changepoints
the changepoint locations
References
Romano, G., Rigaill, G., Runge, V., Fearnhead, P. Detecting Abrupt Changes in the Presence of Local Fluctuations and Autocorrelated Noise. arXiv preprint https://arxiv.org/abs/2005.01379 (2020).
Examples
library(ggplot2)
set.seed(42)
Y = dataRWAR(n = 1e3, phi = .5, sdEta = 3, sdNu = 1, jumpSize = 15, type = "updown", nbSeg = 5)
y = Y$y
ggplot(data.frame(t = 1:length(y), y), aes(x = t, y = y)) +
geom_point() +
geom_vline(xintercept = Y$changepoints, col = 4, lty = 3)