davies.start {Davies} | R Documentation |
start value for Davies minimization routines
Description
Gives a “start” value for the optimization routines. Uses heuristics that seem to work.
Usage
davies.start(x, threeps=c(0.1,0.5,0.9), small = 0.01)
Arguments
x |
dataset to be used |
threeps |
a three-element vector representing the quantiles to be balanced. The default values balance the first and ninth deciles and the median. These seem to work for me pretty well; YMMV |
small |
a “small” value to be used for |
Details
Returns a “start” value of the pararameters for use in one of the
Davies fitting routines maximum.likelihood()
or least.squares()
.
Uses three heuristic methods (one assuming \lambda_1=
\lambda_2
, one with \lambda_1=0
,
and one with \lambda_2=0
). Returns the best one of the
three, as measured by objective()
.
Author(s)
Robin K. S. Hankin
See Also
least.squares
, maximum.likelihood
,
objective
Examples
d <- rchisq(40,1)
davies.start(d)
least.squares(d)
params <- c(10 , 0.1 , -0.1)
x <- rdavies(100 , params)
davies.start(x)
f <- function(threeps){objective(davies.start(x,threeps),x)}
(jj<-optim(c(0.1,0.5,0.9),f))
davies.start(x,jj$par)
least.squares(x)
#not bad at all.