Gld {Davies}R Documentation

The Generalized Lambda Distribution

Description

Density, distribution function, quantile function and random generation for the Generalized Lambda Distribution

Usage

dgld(x, params)
dgld.p(x, params)
pgld(q, params)
qgld(p, params)
rgld(n, params)

Arguments

x, q

vector of quantiles

p

vector of probabilities

n

In function rgld(), the number of observations. If length(n)> 1, the length is taken to be the number required

params

vector of parameters: params[1]==lambda1 et seq

Details

The Generalized Lambda distribution has quantile function

\[f(x)=\lambda_1 +(p^{\lambda_3} - (1-p)^{\lambda_4})/\lambda_2\]

Value

Function dgld() gives the density, dgld.p() gives the density in terms of the quantile, pgld() gives the distribution function, qgld() gives the quantile function, and rgld() generates random deviates.

References

See Also

Davies, expected.gld

Examples

params <- c(4.114,0.1333,0.0193,0.1588)  #taken straight from some paper

gld.rv <- rgld(100,params)

hist(gld.rv)
fit.davies.q(gld.rv)  #remember the Davies distn has 3 DF and the GLD 4...

[Package Davies version 1.2-0 Index]