Davies {Davies} | R Documentation |
The Davies distribution
Description
Density, distribution function, quantile function and random generation for the Davies distribution.
Usage
ddavies(x, params,log=FALSE)
pdavies(x, params,log.p=FALSE,lower.tail=TRUE)
qdavies(p, params,lower.tail=TRUE)
rdavies(n, params)
ddavies.p(x,params,log=FALSE)
Arguments
x |
quantile |
p |
vector of probabilities |
n |
number of observations. If |
lower.tail |
logical; if |
log , log.p |
logical; if |
params |
A three-member vector holding \(C\), \(\lambda_1\) and \(\lambda_2\) |
Details
The Davies distribution is defined in terms of its quantile function:
Cp^lambda_1/(1-p)^lambda2
It does not have a closed-form probability density function or cumulative density function, so numerical solution is used.
Function ddavies.p()
returns the density of the Davies function
but as a function of the quantile.
Value
Function
ddavies()
gives the density,
pdavies()
gives the distribution function,
qdavies()
gives the quantile function, and
rdavies()
generates random deviates.
Author(s)
Robin K. S. Hankin
References
R. K. S. Hankin and A. Lee 2006. “A new family of non-negative distributions” Australia and New Zealand Journal of Statistics, 48(1):67–78
See Also
Gld
, fit.davies.p
,
least.squares
, skewness
Examples
params <- c(10,0.1,0.1)
x <- seq(from=4,to=20,by=0.2)
p <- seq(from=1e-3,to=1-1e-3,len=50)
rdavies(n=5,params)
least.squares(rdavies(100,params))
plot(pdavies(x,params))
plot(p,qdavies(p,params))
plot(x,ddavies(x,params),type="b")