sESOM4BMUs {DatabionicSwarm}R Documentation

Intern function: Simplified Emergent Self-Organizing Map

Description

Intern function for the simplified ESOM (sESOM) algorithm for fixed BestMatchingUnits.

Usage

sESOM4BMUs(BMUs,Data, esom, toroid, CurrentRadius, ComputeInR=FALSE,
Parallel=TRUE)

Arguments

BMUs

[1:Lines,1:Columns], BestMAtchingUnits generated by ProjectedPoints2Grid()

Data

[1:n,1:d] array of data: n cases in rows, d variables in columns

esom

[1:Lines,1:Columns,1:weights] array of NeuronWeights, see ListAsEsomNeurons()

toroid

TRUE/FALSE - topology of points

CurrentRadius

number betweeen 1 to x

ComputeInR

=T: Rcode, =F Cpp Code.

Parallel

Optional, =TRUE: Parallel C++ implementation, =FALSE C++ implementation

Details

Algorithm is described in [Thrun, 2018, p. 48, Listing 5.1].

Value

esom

numeric array [1:Lines,1:Columns,1:d], d is the dimension of the weights, the same as in the ESOM algorithm. modified esomneuros regarding a predefined neighborhood defined by a radius

Note

Usually not for seperated usage!

Author(s)

Michael Thrun

References

[Thrun, 2018] Thrun, M. C.: Projection Based Clustering through Self-Organization and Swarm Intelligence, doctoral dissertation 2017, Springer, Heidelberg, ISBN: 978-3-658-20539-3, doi:10.1007/978-3-658-20540-9, 2018.

See Also

GeneratePswarmVisualization


[Package DatabionicSwarm version 2.0.0 Index]