MultiStart {Dark} | R Documentation |
MultiStart
Description
Given a dark object, obj
, this function repeatedly optimises the parameters in the vicinity of the seed array. The width of the search is dependent upon the value of spread
.
Usage
MultiStart(obj, repeats, draw, spread, debug)
Arguments
obj |
A dark object containing at least;
| |||||||
repeats |
The number of times the algorithm is repeated | |||||||
draw |
A flag indicating whether a figure should be drawn. | |||||||
spread |
The amount by which the seed array should be varied. A larger value gives a greater range of possible starting points. | |||||||
debug |
A flag used in debugging the software. |
Details
To reduce the possibility of selecting non-optimal parameter estimates, the optimisation is repeated in the region of initial estimates. The
Value
Returns a list;
time |
times of threshold setting |
out$thrs |
observed thresholds |
out$resid |
residuals |
out$fit |
optimal fitted values |
out$thet |
seed parameters if test data |
out$sse |
sum of squared residuals if test data |
out$data |
source of the data |
out$opt |
optimal parameter estimates of the chosen model |
out$Mod |
name of the optimal model |
out$Pn |
the number of parameters needed to describe the data |
out$AIC |
array of AICc scores |
out$val |
calculated sum of squared residuals |
out$R2 |
the coefficient of determination |
out$warning |
if none of the nearby values converge |
out$call |
updates the function call label |
Author(s)
Jeremiah MF Kelly
Faculty of Life Sciences, The University of Manchester, M13 9PL, UK
References
Nelder, J.A.; Mead, R. 1965: A simplex for function minimization. Comput. J. 7, 308-313
Examples
set.seed(1234)
Time<- seq(0,20)
tmp<- TestData(Time)
P<-Start(tmp,1000)
MSC<-ModelSelect(tmp, P)
tmp2<-BestFit(tmp, MSC)
tmp3<-MultiStart(tmp2,10)