Chapter07_power {DanielBiostatistics10th} | R Documentation |
Chapter 7: Power Curve
Description
Functions for Chapter 7, Hypothesis Testing.
Usage
power_z(
x,
null.value,
sd,
n,
alternative = c("two.sided", "less", "greater"),
sig.level = 0.05
)
Arguments
x |
numeric vector, mean parameter(s) |
null.value |
numeric scalar, mean parameter |
sd |
numeric scalar, population standard deviation |
n |
integer scalar, sample size |
alternative |
character scalar, alternative hypothesis,
either |
sig.level |
numeric scalar, significance level (i.e., Type-I-error rate), default |
Details
Function power_z calculates the powers at each element of the alternative parameters \mu_1
, for one-sample z
-test
H_0: \mu = \mu_0
vs.H_A: \mu \neq \mu_0
, ifalternative = 'two.sided'
H_0: \mu \leq \mu_0
vs.H_A: \mu > \mu_0
, ifalternative = 'greater'
H_0: \mu \geq \mu_0
vs.H_A: \mu < \mu_0
, ifalternative = 'less'
Value
Function power_z returns a 'power_z'
object,
which inherits from 'power.htest'
class.
See Also
Examples
library(DanielBiostatistics10th)
# Example 7.9.1; Page 272 (10th ed), Page 245 (11th ed)
(p791 = power_z(seq.int(from = 16, to = 19, by = .5), null.value = 17.5, sd = 3.6, n = 100L))
# Table 7.9.1
# Example 7.9.2; Page 276 (10th ed), Page 248 (11th ed)
(p792 = power_z(seq.int(from = 50, to = 70, by = 5), null.value = 65, sd = 15, n = 20L,
sig.level = .01, alternative = 'less'))
# Example 7.10.1; Page 278,
(n_d7101 <- uniroot(f = function(x) {
power_z(55, null.value = 65, sd = 15, n = x, sig.level = .01, alternative = 'less')$power - .95
}, interval = c(0, 50))$root)
power_z(55, null.value = 65, sd = 15, n = ceiling(n_d7101), sig.level = .01, alternative = 'less')