dw.meanvar {DWreg} | R Documentation |
Mean and Variance of Discrete Weibull
Description
Mean and variance of a discrete Weibull distribution with parameters q and beta.
Usage
dw.meanvar(q,beta,M)
Arguments
q , beta |
Parameters of the distribution |
M |
Maximum value of the summation. Default value is 1000. |
Details
The mean and variance are computed using the following approximations:
E(X)=\sum_{k=1}^{M} q^{k^{\beta}}
E(X^2)=\sum_{k=1}^{M} (2k-1)q^{k^{\beta}} = 2\sum_{k=1}^{M} kq^{k^{\beta}}-E(X)
Value
The function returns the mean and variance of a DW distribution with parameters q and beta.
Author(s)
Veronica Vinciotti
References
Khan M, Khalique A, Abouammoth A. On estimating parameters in a discrete Weibull distribution. IEEE transactions on Reliability 1989; 38(3):348-350.
Examples
dw.meanvar(q=0.9,beta=1.5)
#compare with sample mean/variance from a random sample
x<-rdw(1000,q=0.9,beta=1.5)
mean(x)
var(x)
[Package DWreg version 2.0 Index]