MBLasso {DWLasso} | R Documentation |
Inferring the network using nodewise regression method
Description
This function infers the network using nodewise regression method by Meinhausen and Buhlmann.
Usage
MBLasso(dat,lambda=0.4,w.mb)
Arguments
dat |
An input matrix. The columns represent variables and the rows indicate observations. |
lambda |
A penalty parameter of the weighted Lasso that controls the sparsity of the inferred network. |
w.mb |
An unput weight vector which is computed from the degree of the inferred network. |
References
Meinshausen, Nicolai, and Peter Bühlmann. "High-dimensional graphs and variable selection with the lasso." The annals of statistics (2006): 1436-1462.
Examples
library(DWLasso)
library(glmnet)
library(hglasso)
# Generate inverse covariance matrix with 3 hubs
# 20 % of the elements within a hub are zero
# 97 % of the elements that are not within hub nodes are zero
p <- 60 # Number of variables
n <- 40 # Number of samples
hub_number = 3 # Number of hubs
# Generate the adjacency matrix
Theta <- HubNetwork(p,0.97,hub_number,0.2)$Theta
# Generate a data matrix
out <- rmvnorm(n,rep(0,p),solve(Theta))
# Standardize the data
dat <- scale(out)
# Infer the network using weighted nodewise regression
w.mb <- rep(1,p)
adj.mat <- MBLasso(dat,lambda=0.4,w.mb)
[Package DWLasso version 1.1 Index]