DTDAni {DTDA.ni} | R Documentation |
Doubly Truncated Data Analysis, Non Iterative
Description
This function computes a non-iterative estimator for the cumulative distribution of a doubly truncated variable, see de Uña-Álvarez (2018). The function is restricted to interval sampling.
Usage
DTDAni(x, u, tau)
Arguments
x |
Numeric vector corresponding the variable of ultimate interest. |
u |
Numeric vector corresponding to the left truncation variable. |
tau |
Sampling interval width. The right truncation values will be internally calculated as v = u + tau. |
Details
The function DTDAni is adapted to the presence of ties.
It can be used to compute the direct (Fd)
and the reverse (Fr)
estimators;
see the example below. Both curves are valid estimators for the cumulative
distribution (F) of the doubly truncated variable. Weighted estimators
Fw = w*Fd + (1-w)*Fr
with 0<w<1
are valid too, the choice w=1/2
being
recommended in practice (de Uña-Álvarez, 2018).
Value
A list containing:
x |
The distinct values of the variable of interest. |
nx |
The absloute frequency of each x value. |
cumprob |
The estimated cumulative probability for each x value. |
P |
The auxiliary Pi used in the calculation of the estimator. |
L |
The auxiliary Li used in the calculation of the estimator. |
Acknowledgements
Jacobo de Uña-Álvarez was supported by Grant MTM2014-55966-P, Spanish Ministry of Economy and Competitiveness.
José Carlos Soage was supported by Red Tecnológica de Matemática Industrial (Red TMATI), Cons. de Cultura, Educación e OU, Xunta de Galicia (ED341D R2016/051) and by Grupos de Referencia Competitiva, Consolidación y Estructuración de Unidades de Investigación Competitivas del SUG, Cons. de Cultura, Educación e OU, Xunta de Galicia (GRC ED431C 2016/040).
Author(s)
de Uña-Álvarez, Jacobo.
Soage González, José Carlos.
Maintainer: José Carlos Soage González. jsoage@uvigo.es
References
de Uña-Álvarez J. (2018) A Non-iterative Estimator for Interval Sampling and Doubly Truncated Data. In: Gil E., Gil E., Gil J., Gil M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham
Examples
## Not run:
# Generating data which are doubly truncated:
N <- 250
x0 <- runif(N) # Original data
u0 <- runif(N, -0.25, 0.5) # Left-truncation times
tau <- 0.75 # Interval width
v0 <- u0 + tau
x <- x0[u0 <= x0 & x0 <= v0]
u <- u0[u0 <= x0 & x0 <= v0]
v <- v0[u0 <= x0 & x0 <= v0]
n <- length(x) # Final sample size after the interval sampling
# Create an object with DTDAni function
res <- DTDAni(x, u, tau)
plot(res)
abline(a = 0, b = 1, col = "green") #the true cumulative distribution
# Calculating the reverse estimator:
res2 <- DTDAni(-x, -u - tau, tau)
lines(-res2$x, 1 - res2$cumprob, type = "s", col = "blue", lty = 2)
# Weigthed estimator (recommended):
w <- 1/2
k <- length(res$x)
Fw <- w * res$cumprob + (1 - w) * (1 - res2$cumprob[k:1])
lines(res$x, Fw, type = "s", col = 2)
# Using res$P and res$L to compute the estimator:
k <- length(res$x)
F <- rep(1, k)
for (i in 2:k){
F[i] <- (F[i - 1] - res$P[i - 1]) / res$L[i - 1] + res$P[i - 1]
}
F0 <- F/max(F) # This is equal to res$cumprob
## End(Not run)