sample.nu {DSSP} | R Documentation |
Function to sample from the posterior of the spatial effects
Description
This function samples from the posterior density of the spatial effects from the direct sampling spatial prior (DSSP) model.
Usage
sample.nu(Y, eta, delta, EV, V)
Arguments
Y |
vector of observed data. |
eta |
samples of the smoothing parameter from the |
delta |
samples of the variance parameter from the |
EV |
eigenvalues of the precision matrix spatial prior from the function |
V |
eigenvectors of the precision matrix spatial prior from the function |
Value
A matrix of samples with each column a random draw from the posterior
of the spatial effects from the DSSP model \pi(nu | eta, delta, y)
.
Examples
## Use the Meuse River dataset from the package 'gstat'
library(sp)
library(gstat)
data(meuse.all)
coordinates(meuse.all) <- ~ x + y
X <- scale(coordinates(meuse.all))
tmp <- make.M(X)
EV <- tmp$M.eigen$values
V <- tmp$M.eigen$vectors
Y <- scale(log(meuse.all$zinc))
Q <- crossprod(Y, V)
ND <- nrow(X) - 3
f <- function(x) -x ## log-prior for exponential distribution for the smoothing parameter
## Draw 100 samples from the posterior of eta given the data y.
ETA <- sample.eta(100, ND, EV, Q, f, UL = 1000)
DELTA <- sample.delta(ETA, ND, EV, Q, pars = c(0.001, 0.001))
NU <- sample.nu(Y, ETA, DELTA, EV, V)
[Package DSSP version 0.1.1 Index]