Data Splitting Algorithms for Model Developments


[Up] [Top]

Documentation for package ‘DSAM’ version 1.0.2

Help Pages

checkFull Check whether the sample set is full
dataSplit Main function of data splitting algorithm
DP.initialSample Initial sampling of DUPLEX
DP.reSample Repeat sampling of DUPLEX
DSAM_test_largeData large test dataset
DSAM_test_modData Moderate test dataset
DSAM_test_smallData Small test dataset
DUPLEX 'DSAM' - DUPLEX algorithm
getAUC Get the AUC value between two datasets
getMax Get the maximum of the output column from the original data set
getMean Get the mean and standard deviation of the output column from the original data set
getMin Get the minimum of the output column from the original data set
getSnen Get sampling number of each SOM neuron
MDUPLEX 'DSAM' - MDUPLEX algorithm
par.default Default parameter list
remainUnsample Get the remain unsampled data after 'SSsample'
SBSS.P 'DSAM' - SBSS.P algorithm
selectData Select specific split data
somCluster Self-organized map clustering
SOMPLEX 'DSAM' - SOMPLEX algorithm
SS 'DSAM' - SS algorithm
SSsample Core function of SS sampling
standardise Standardized data
TIMECON 'DSAM' - Time-consecutive algorithm