drdrtest.superlearner {DRDRtest} | R Documentation |
The function for performing tests of average treatment effects with SuperLearner
Description
This is the function for testing average treatment effects with user specified nuisance functions.
Usage
drdrtest.superlearner(
y,
a,
l,
arange,
pi.sl.lib = c("SL.earth", "SL.glm", "SL.gam", "SL.glmnet"),
mu.sl.lib = c("SL.earth", "SL.glm", "SL.gam", "SL.glmnet"),
mu.family = "gaussian",
h = NULL,
b = 1000,
dist = "TwoPoint",
a.grid.size = 401,
pi.low = 0.01,
pi.var.low = 0.01
)
Arguments
y |
A vector containing the outcomes for each observation |
a |
A vector containing the treatment levels (dosage) for each observation |
l |
A data.frame containing the observations of covariates |
arange |
A vector of length 2 giving the lower bound and upper bound of treatment levels |
pi.sl.lib |
Models will be used by SuperLearner to estiamte propensity scores |
mu.sl.lib |
Models will be used by SuperLearner to estiamte outcome regression function |
mu.family |
Type of response. Currently only support "gaussian" and "binomial" |
h |
bandwidth to be used in kernel regression. If not specified, will by default use "rule of thumb" bandwidth selector |
b |
number of Bootstrap samples to be generated |
dist |
distibution used to generate residuals for Bootstrap samples. Currently only have two options, "TwoPoint" and "Rademachar" |
a.grid.size |
size of equally spaced grid points over |
pi.low |
Lower bound to truncate propensity scores |
pi.var.low |
Lower bound to truncate conditional variance of treament (used in propensity score estimation). |
Value
A list containing
- p.value:
P value of the test result
- test.stat:
Value of the observed test statistic
- Bootstrap.samples:
A vector containing test statistic values from Bootstrap samples
- loc.fit:
A list containg evalution points of average treatment effect and the corresponding values
- bandwidth:
Bandwidth used in kernel regression
Examples
mu.mod<-function(a,l,delta,height){
mu <- as.numeric(l%*%c(0.2,0.2,0.3,-0.1))+triangle(a-2.5,delta,height)+a*(-0.1*l[,1]+0.1*l[,3])
return(mu)
}
triangle <- function(a,delta,height){
y <- exp(-a^2/((delta/2)^2))*height
return(y)
}
set.seed(2000)
n <- 500
d <- 4
sigma <- 0.05
delta <- 1
height <- 0
arange<-c(0.01,4.99)
l <- matrix(rnorm(n*d),ncol=d)
colnames(l) <- paste("l",1:4,sep="")
logit.lambda <- as.numeric(l%*%c(0.1,0.1,-0.1,0.2))
lambda <- exp(logit.lambda)/(1+exp(logit.lambda))
a <- rbeta(n, shape1 = lambda, shape2 =1-lambda)*5
mu <- mu.mod(a,l,delta,height)
residual.list <- rnorm(n,mean=0,sd=sigma)
y <- mu+residual.list
out <- drdrtest.superlearner(y,a,l,arange,pi.sl.lib=c("SL.glm"),mu.sl.lib=c("SL.glm"))