drayl_int3D {DRAYL} | R Documentation |
Three Dimensional Rayleigh Density by Integration
Description
A three dimensional Rayleigh density by integration.
Usage
drayl_int3D(r,omega,sigma,cor,method)
Arguments
r |
Evaluation point. |
omega |
Omega construct necessary for the Integration method. |
sigma |
Variances of the signals. |
cor |
Correlation structure. |
method |
Integration methods, either "Kronrod","Clenshaw","Simpson","Romberg","TOMS614" or "mixed". |
Value
Evaluates the 3D Rayleigh density at the point r
, for the values
omega
,sigma
and cor
as specified by Bealieu's method.
Examples
# Matrix
K3 = matrix(0,nrow = 6,ncol = 6)
sigma3 = sqrt(c(0.5,1,1.5))
diag(K3) = c(0.5,0.5,1,1,1.5,1.5)
# rho_12 rho_13 rho_23
rho3<-c(0.9,0.8,0.7)
K3[1,3]=K3[3,1]=K3[2,4]=K3[4,2]=sigma3[1]*sigma3[2]*rho3[1]
K3[1,5]=K3[5,1]=K3[2,6]=K3[6,2]=sigma3[1]*sigma3[3]*rho3[2]
K3[3,5]=K3[5,3]=K3[4,6]=K3[6,4]=sigma3[2]*sigma3[3]*rho3[3]
cor3 = rho3
mat<-diag(3)
mat[1,2]=mat[2,1]=cor3[1]
mat[1,3]=mat[3,1]=cor3[2]
mat[2,3]=mat[3,2]=cor3[3]
omega3=mat
drayl_int3D(c(1,1,1),omega = omega3,sigma = sigma3,cor = cor3, method = "Romberg")
[Package DRAYL version 1.0 Index]