pnormLU {DPQmpfr}R Documentation

Bounds for 1-Phi(.) – Mill's Ratio related Bounds for pnorm()

Description

Bounds for 1 - \Phi(x), i.e., pnorm(x, *, lower.tail=FALSE), typically related to Mill's Ratio.

Usage


pnormL_LD10(x, lower.tail = FALSE, log.p = FALSE)
pnormU_S53 (x, lower.tail = FALSE, log.p = FALSE)

Arguments

x

positive (at least non-negative) numeric "mpfr" vector (or array).

lower.tail, log.p

logical, see, e.g., pnorm().

Value

vector/array/mpfr like x.

Author(s)

Martin Maechler

References

Lutz Duembgen (2010) Bounding Standard Gaussian Tail Probabilities; arXiv preprint 1012.2063, https://arxiv.org/abs/1012.2063

See Also

pnorm. The same functions “numeric-only” are in my DPQ package.

Examples

x <- seq(1/64, 10, by=1/64)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other

matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## check they are lower and upper bounds indeed :
stopifnot(D[,"Lo"] < 0, D[,"Up"] > 0)

matplot(x[x>4], D[x>4,], type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

### zoom out to larger x : [1, 1000]
x <- seq(1, 1000, by=1/4)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other
matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## check they are lower and upper bounds indeed :
table(D[,"Lo"] < 0) # no longer always true
table(D[,"Up"] > 0)
## not even when equality (where it's much better though):
table(D[,"Lo"] <= 0)
table(D[,"Up"] >= 0)

## *relative* differences:
matplot(x, (rD <- 1 - px[,2:3] / px[,1]), type="l", log = "x")
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## abs()
matplot(x, abs(rD), type="l", log = "xy", axes=FALSE, # NB: curves *cross*
        main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
legend("top", c("Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=1:2, lty=1:2)
sfsmisc::eaxis(1, sub10 = 2)
sfsmisc::eaxis(2)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))

### zoom out to LARGE x : ---------------------------

x <- 2^seq(0,    30, by = 1/64)
col4 <- adjustcolor(1:4, 1/2)
options(width = 111) -> oop # (nicely printing "tables")
if(FALSE)## or even HUGE:
   x <- 2^seq(4, 513, by = 1/16)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , a0 = dnorm(x, log=TRUE)
  , a1 = dnorm(x, log=TRUE) - log(x)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
doLegTit <- function(col=1:4) {
  title(main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
  legend("top", c("phi(x)", "phi(x)/x", "Low.Bnd(D10)", "Upp.Bnd(S53)"),
         bty="n", col=col, lty=1:4)
}
## *relative* differences are relevant:
matplot(x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
            ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

if(x[length(x)] > 1e150) # the "HUGE" case (not default)
  print( tail(cbind(x, px), 20) )
  ##--> For very large x ~= 1e154, the approximations overflow *later* than pnorm() itself !!


## abs(rel.Diff)  ---> can use log-log:
matplot(x, abs(rD), type="l", log = "xy", xaxt="n", yaxt="n"); doLegTit()
sfsmisc::eaxis(1, sub10=2)
sfsmisc::eaxis(2)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))

## lower.tail=TRUE (w/ log.p=TRUE) works "the same" for x < 0:
require(Rmpfr)
x <- - 2^seq(0,    30, by = 1/64)
##   ==
log1mexp <- Rmpfr::log1mexp # Rmpfr version >= 0.8-2 (2020-11-11 on CRAN)
px <- cbind(
    lQ = pnorm   (x, lower.tail=TRUE, log.p=TRUE)
  , a0 = log1mexp(- dnorm(-x, log=TRUE))
  , a1 = log1mexp(-(dnorm(-x, log=TRUE) - log(-x)))
  , Lo = log1mexp(-pnormL_LD10(-x, lower.tail=TRUE, log.p=TRUE))
  , Up = log1mexp(-pnormU_S53 (-x, lower.tail=TRUE, log.p=TRUE)) )
matplot(-x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
            ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## Comparison with  Rmpfr::erf() / erfc() based pnorm():

## Set the exponential ranges to maximal -- to evade underflow as long as possible
.mpfr_erange_set(value = (1-2^-52) * .mpfr_erange(c("min.emin","max.emax")))
l2t <- seq(0, 32, by=1/4)
twos <- mpfr(2, 1024)^l2t
Qt  <- pnorm(twos, lower.tail=FALSE)
pnU <- pnormU_S53 (twos, log.p=TRUE)
pnL <- pnormL_LD10(twos, log.p=TRUE)
logQt <- log(Qt)
M <- cbind(twos, Qt, logQt = logQt, pnU)
roundMpfr(M, 40)
dM <- asNumeric(cbind(dU = pnU - logQt,    dL = logQt - pnL,
                      # NB: the numbers are *negative*
                      rdU= 1 - pnU/logQt, rdL = pnL/logQt - 1))
data.frame(l2t, dM)
## The bounds are ok (where Qt does not underflow): L < p < U :
stopifnot(pnU > pnL, pnU > logQt, (logQt > pnL)[Qt > 0])
roundMpfr(cbind(twos, pnL, pnU, D=pnU-pnL, relD=(pnU-pnL)/((pnU+pnL)/2)), 40)

## ----- R's pnorm() -- is it always inside [L, U]  ?? ---------------------
nQt <- stats::pnorm(asNumeric(twos), lower.tail=FALSE, log.p=TRUE)
data.frame(l2t, check.names=FALSE
         , nQt
         , "L <= p" = c(" ", "W")[2 -(pnL <= nQt)]
         , "p <= U" = c(" ", "W")[2- (nQt <= pnU)])
## ==> pnorm() is *outside* sometimes for l2t >= 7.25; always as soon as l2t >= 9.25

## *but* the relative errors are around c_epsilon  in all these cases :
plot (2^l2t, asNumeric(abs(nQt-pnL)/abs(pnU)), type="o", cex=1/4, log="xy", axes=FALSE)
sfsmisc::eaxis(1, sub10 = 2)
sfsmisc::eaxis(2)
lines(2^l2t, asNumeric(abs(nQt-pnU)/abs(pnU)), type="o", cex=1/4, col=2)
abline(h=c(1:4)*2^-53, lty=2, col=adjustcolor(1, 1/4))

options(oop)# reverting

[Package DPQmpfr version 0.3-2 Index]