qnchisqAppr {DPQ} | R Documentation |
Compute Approximate Quantiles of Noncentral Chi-Squared Distribution
Description
Compute quantiles (inverse distribution values) for the non-central chi-squared distribution.
....... using Johnson,Kotz, and other approximations ..............
Usage
qchisqAppr.0 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.1 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.3 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqApprCF1(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqApprCF2(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqCappr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqN (p, df, ncp = 0, qIni = qchisqAppr.0, ...)
qnchisqAbdelAty (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqBolKuz (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqPatnaik (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqPearson (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqSankaran_d(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
Arguments
p |
vector of probabilities. |
df |
degrees of freedom |
ncp |
non-centrality parameter |
lower.tail , log.p |
logical, see, e.g., |
qIni |
a |
... |
further arguments to |
Details
Compute (approximate) quantiles, using approximations analogous to those
for the probabilities, see pnchisqPearson
.
- qchisqAppr.0():
...TODO...
- qchisqAppr.1():
...TODO...
- qchisqAppr.2():
...TODO...
- qchisqAppr.3():
...TODO...
- qchisqApprCF1():
...TODO...
- qchisqApprCF2():
...TODO...
- qchisqCappr.2():
...TODO...
- qchisqN():
Uses Newton iterations with
pchisq()
anddchisq()
to determineqchisq(.)
values.- qnchisqAbdelAty():
...TODO...
- qnchisqBolKuz():
...TODO...
- qnchisqPatnaik():
...TODO...
- qnchisqPearson():
...TODO...
- qnchisqSankaran_d():
...TODO...
Value
numeric
vectors of (noncentral) chi-squared quantiles,
corresponding to probabilities p
.
Author(s)
Martin Maechler, from May 1999; starting from a post to the S-news
mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of
our qchisqAppr.0()
thanking Jim Stapleton for providing it.
References
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995)
Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley;
chapter 29 Noncentral \chi^2
-Distributions;
notably Section 8 Approximations, p.461 ff.
See Also
Examples
pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999)
pkg <- "package:DPQ"
qnchNms <- c(paste0("qchisqAppr.",0:3), paste0("qchisqApprCF",1:2),
"qchisqN", "qchisqCappr.2", ls(pkg, pattern = "^qnchisq"))
qnchF <- sapply(qnchNms, get, envir = as.environment(pkg))
for(ncp in c(0, 1/8, 1/2)) {
cat("\n~~~~~~~~~~~~~\nncp: ", ncp,"\n=======\n")
print(sapply(qnchF, function(F) Vectorize(F, "p")(pp, df = 3, ncp=ncp)))
}
## Bug: qnchisqSankaran_d() has numeric overflow problems for large df:
qnchisqSankaran_d(pp, df=1e200, ncp = 100)
## One current (2019-08) R bug: Noncentral chi-squared quantiles on *LOG SCALE*
## a) left/lower tail : -------------------------------------------------------
qs <- 2^seq(0,11, by=1/16)
pqL <- pchisq(qs, df=5, ncp=1, log.p=TRUE)
plot(qs, -pqL, type="l", log="xy") # + expected warning on log(0) -- all fine
qpqL <- qchisq(pqL, df=5, ncp=1, log.p=TRUE) # severe overflow :
qm <- cbind(qs, pqL, qchisq=qpqL
, qchA.0 = qchisqAppr.0 (pqL, df=5, ncp=1, log.p=TRUE)
, qchA.1 = qchisqAppr.1 (pqL, df=5, ncp=1, log.p=TRUE)
, qchA.2 = qchisqAppr.2 (pqL, df=5, ncp=1, log.p=TRUE)
, qchA.3 = qchisqAppr.3 (pqL, df=5, ncp=1, log.p=TRUE)
, qchACF1= qchisqApprCF1(pqL, df=5, ncp=1, log.p=TRUE)
, qchACF2= qchisqApprCF2(pqL, df=5, ncp=1, log.p=TRUE)
, qchCa.2= qchisqCappr.2(pqL, df=5, ncp=1, log.p=TRUE)
, qnPatnaik = qnchisqPatnaik (pqL, df=5, ncp=1, log.p=TRUE)
, qnAbdelAty = qnchisqAbdelAty (pqL, df=5, ncp=1, log.p=TRUE)
, qnBolKuz = qnchisqBolKuz (pqL, df=5, ncp=1, log.p=TRUE)
, qnPearson = qnchisqPearson (pqL, df=5, ncp=1, log.p=TRUE)
, qnSankaran_d= qnchisqSankaran_d(pqL, df=5, ncp=1, log.p=TRUE)
)
round(qm[ qs %in% 2^(0:11) , -2])
#=> Approximations don't overflow but are not good enough
## b) right/upper tail , larger ncp -------------------------------------------
qS <- 2^seq(-3, 3, by=1/8)
pqLu <- pchisq(qS, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
## using "the alternative" (here is currently identical):
identical(pqLu, (pqLu.<- log1p(-pchisq(qS, df=5, ncp=100)))) # here TRUE
plot (qS, -pqLu, type="l", log="xy") # fine
qpqLu <- qchisq(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
cbind(qS, pqLu, pqLu, qpqLu)# # severe underflow
qchMat <- cbind(qchisq = qpqLu
, qchA.0 = qchisqAppr.0 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchA.1 = qchisqAppr.1 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchA.2 = qchisqAppr.2 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchA.3 = qchisqAppr.3 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchACF1= qchisqApprCF1(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchACF2= qchisqApprCF2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qchCa.2= qchisqCappr.2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qnPatnaik = qnchisqPatnaik (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qnAbdelAty = qnchisqAbdelAty (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qnBolKuz = qnchisqBolKuz (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qnPearson = qnchisqPearson (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
, qnSankaran_d= qnchisqSankaran_d(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
)
cbind(L2err <- sort(sqrt(colSums((qchMat - qS)^2))))
##--> "Sankaran_d", "CF1" and "CF2" are good here
plot (qS, qpqLu, type = "b", log="x", lwd=2)
lines(qS, qS, col="gray", lty=2, lwd=3)
top3 <- names(L2err)[1:3]
use <- c("qchisq", top3)
matlines(qS, qchMat[, use]) # 3 of the approximations are "somewhat ok"
legend("topleft", c(use,"True"), bty="n", col=c(palette()[1:4], "gray"),
lty = c(1:4,2), lwd = c(2, 1,1,1, 3))