pnchi1sq {DPQ}R Documentation

(Probabilities of Non-Central Chi-squared Distribution for Special Cases

Description

Computes probabilities for the non-central chi-squared distribution, in special cases, currently for df = 1 and df = 3, using ‘exact’ formulas only involving the standard normal (Gaussian) cdf \Phi() and its derivative \phi(), i.e., R's pnorm() and dnorm().

Usage

pnchi1sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .01)
pnchi3sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .04)

Arguments

q

number ( ‘quantile’, i.e., abscissa value.)

ncp

non-centrality parameter \delta; ....

lower.tail, log.p

logical, see, e.g., pchisq().

epsS

small number, determining where to switch from the “small case” to the regular case, namely by defining small <- sqrt(q/ncp) <= epsS.

Details

In the “small case” (epsS above), the direct formulas suffer from cancellation, and we use Taylor series expansions in s := \sqrt{q}, which in turn use “probabilists'” Hermite polynomials He_n(x).

The default values epsS have currently been determined by experiments as those in the ‘Examples’ below.

Value

a numeric vector “like” q+ncp, i.e., recycled to common length.

Author(s)

Martin Maechler, notably the Taylor approximations in the “small” cases.

References

Johnson et al.(1995), see ‘References’ in pnchisqPearson.

https://en.wikipedia.org/wiki/Hermite_polynomials for the notation.

See Also

pchisq, the (simple and R-like) approximations, such as pnchisqPearson and the wienergerm approximations, pchisqW() etc.

Examples

qq <- seq(9500, 10500, length=1000)
m1 <- cbind(pch = pchisq  (qq, df=1, ncp = 10000),
            p1  = pnchi1sq(qq,       ncp = 10000))
matplot(qq, m1, type = "l"); abline(h=0:1, v=10000+1, lty=3)
all.equal(m1[,"p1"], m1[,"pch"], tol=0) # for now,  2.37e-12

m3 <- cbind(pch = pchisq  (qq, df=3, ncp = 10000),
             p3 = pnchi3sq(qq,       ncp = 10000))
matplot(qq, m3, type = "l"); abline(h=0:1, v=10000+3, lty=3)
all.equal(m3[,"p3"], m3[,"pch"], tol=0) # for now,  1.88e-12

stopifnot(exprs = {
  all.equal(m1[,"p1"], m1[,"pch"], tol=1e-10)
  all.equal(m3[,"p3"], m3[,"pch"], tol=1e-10)
})

### Very small 'x' i.e., 'q' would lead to cancellation: -----------

##  df = 1 ---------------------------------------------------------

qS <- c(0, 2^seq(-40,4, by=1/16))
m1s <- cbind(pch = pchisq  (qS, df=1, ncp = 1)
           , p1.0= pnchi1sq(qS,       ncp = 1, epsS = 0)
           , p1.4= pnchi1sq(qS,       ncp = 1, epsS = 1e-4)
           , p1.3= pnchi1sq(qS,       ncp = 1, epsS = 1e-3)
           , p1.2= pnchi1sq(qS,       ncp = 1, epsS = 1e-2)
        )
cols <- adjustcolor(1:5, 1/2); lws <- seq(4,2, by = -1/2)
abl.leg <- function(x.leg = "topright", epsS = 10^-(4:2), legend = NULL)
{
   abline(h = .Machine$double.eps, v = epsS^2,
          lty = c(2,3,3,3), col= adjustcolor(1, 1/2))
   if(is.null(legend))
     legend <- c(quote(epsS == 0), as.expression(lapply(epsS,
                             function(K) substitute(epsS == KK,
                                                    list(KK = formatC(K, w=1))))))
   legend(x.leg, legend, lty=1:4, col=cols, lwd=lws, bty="n")
}
matplot(qS, m1s, type = "l", log="y" , col=cols, lwd=lws)
matplot(qS, m1s, type = "l", log="xy", col=cols, lwd=lws) ; abl.leg("right")
## ====  "Errors" ===================================================
## Absolute: -------------------------
matplot(qS,     m1s[,1] - m1s[,-1] , type = "l", log="x" , col=cols, lwd=lws)
matplot(qS, abs(m1s[,1] - m1s[,-1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg("bottomright")
rbind(all     = range(aE1e2 <- abs(m1s[,"pch"] - m1s[,"p1.2"])),
      less.75 = range(aE1e2[qS <= 3/4]))
##            Lnx(F34;i7)  M1mac(BDR)
## all        0 7.772e-16  1.110e-15
## less.75    0 1.665e-16  2.220e-16
stopifnot(aE1e2[qS <= 3/4] <= 4e-16, aE1e2 <= 2e-15) # check
## Relative: -------------------------
matplot(qS,     1 - m1s[,-1]/m1s[,1] , type = "l", log="x",  col=cols, lwd=lws)
abl.leg()
matplot(qS, abs(1 - m1s[,-1]/m1s[,1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg()
## number of correct digits ('Inf' |--> 17) :
corrDigs <- pmin(round(-log10(abs(1 - m1s[,-1]/m1s[,1])[-1,]), 1), 17)
table(corrDigs > 9.8) # all
range(corrDigs[qS[-1] > 1e-8,  1 ], corrDigs[, 2:4]) # [11.8 , 17]
(min (corrDigs[qS[-1] > 1e-6, 1:2], corrDigs[, 3:4]) -> mi6) # 13
(min (corrDigs[qS[-1] > 1e-4, 1:3], corrDigs[,   4]) -> mi4) # 13.9
stopifnot(exprs = {
   corrDigs >= 9.8
   c(corrDigs[qS[-1] > 1e-8,  1 ], corrDigs[, 2]) >= 11.5
   mi6 >= 12.7
   mi4 >= 13.6
})

##  df = 3 -------------- NOTE:  epsS=0 for small qS is "non-sense" --------

qS <- c(0, 2^seq(-40,4, by=1/16))
ee <- c(1e-3, 1e-2, .04)
m3s <- cbind(pch = pchisq  (qS, df=3, ncp = 1)
           , p1.0= pnchi3sq(qS,       ncp = 1, epsS = 0)
           , p1.3= pnchi3sq(qS,       ncp = 1, epsS = ee[1])
           , p1.2= pnchi3sq(qS,       ncp = 1, epsS = ee[2])
           , p1.1= pnchi3sq(qS,       ncp = 1, epsS = ee[3])
        )
matplot(qS, m3s, type = "l", log="y" , col=cols, lwd=lws)
matplot(qS, m3s, type = "l", log="xy", col=cols, lwd=lws); abl.leg("right", ee)
## ====  "Errors" ===================================================
## Absolute: -------------------------
matplot(qS,     m3s[,1] - m3s[,-1] , type = "l", log="x" , col=cols, lwd=lws)
matplot(qS, abs(m3s[,1] - m3s[,-1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg("right", ee)
## Relative: -------------------------
matplot(qS,     1 - m3s[,-1]/m3s[,1] , type = "l", log="x",  col=cols, lwd=lws)
abl.leg(, ee)
matplot(qS, abs(1 - m3s[,-1]/m3s[,1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg(, ee)

[Package DPQ version 0.5-8 Index]