dgamma-utils {DPQ}R Documentation

Utility Functions for dgamma() – Pure R Versions

Description

Mostly, pure R transcriptions of the C code utility functions for dgamma() and similar “base” density functions by Catherine Loader.

bd0C() interfaces to C code which corresponds to R's C Mathlib (Rmath) bd0().

These have extra arguments with defaults that correspond to R's Mathlib C code hardwired cutoffs and tolerances.

Usage


dpois_raw(x, lambda, log=FALSE,
          version, 
          small.x__lambda = .Machine$double.eps,
          ## the defaults for version will probably change in the future
          bd0.delta = 0.1,
          ## optional arguments of log1pmx() :
          tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = verbose,
          logCF = if (is.numeric(x)) logcf else logcfR,
          verbose = FALSE)

dpois_simpl (x, lambda, log=FALSE)
dpois_simpl0(x, lambda, log=FALSE)

bd0(x, np,
    delta = 0.1, maxit = as.integer(-1100 / log2(delta)),
    s0 = .Machine$double.xmin,
    verbose = getOption("verbose"))
bd0C(x, np, delta = 0.1, maxit = 1000L, version = "R4.0", verbose = getOption("verbose"))
# "simple" log1pmx() based versions :
bd0_p1l1d1(x, M, tol_logcf = 1e-14, ...)
bd0_p1l1d (x, M, tol_logcf = 1e-14, ...)
bd0_l1pm  (x, M, tol_logcf = 1e-14, ...)

ebd0 (x, M, verbose = getOption("verbose"), ...) # experimental, may disappear !!
ebd0C(x, M, verbose = getOption("verbose"))

stirlerr(n, scheme = c("R3", "R4.x"),
         cutoffs = switch(scheme
                        , R3   = c(15, 35, 80, 500)
                        , R4.x = c(7.5, 8.5, 10.625, 12.125, 20, 26, 55, 200, 3300)
                          ),
         use.halves = missing(cutoffs),
         verbose = FALSE)

stirlerr_simpl(n, minPrec = 128L)

lgammacor(x, nalgm = 5, xbig = 2^26.5)

Arguments

x, n

numeric (or number-alike such as "mpfr").

lambda, np, M

each numeric (or number-alike ..); distribution parameters.

log

logical indicating if the log-density should be returned, otherwise the density at x.

verbose

logical indicating if some information about the computations are to be printed.

small.x__lambda

positive number; for dpois_raw(x, lambda), when x/lambda is not larger than small.x__lambda, the direct log poisson formula is used instead of ebd0(), bd0() or stirlerr().

delta, bd0.delta

a non-negative number < 1 (practically required to be \le .99), a cutoff for bd0() where a continued fraction series expansion is used when |x - M| < delta*(x+M).

tol_logcf, eps2, minL1, trace.lcf, logCF, ...

optional tuning arguments passed to log1pmx(), and to its options passed to logcf().

maxit

the number of series expansion terms to be used in bd0() when |x-M| is small. The default is k such that \delta^{2k} \le 2^{-1022-52}, i.e., will underflow to zero.

s0

the very small s_0 determining that bd0() = s already before the locf series expansion.

version

a character string specifying the version of bd0() used.

scheme

a character string specifying the cutoffs scheme for stirlerr().

cutoffs

an increasing numeric vector, required to start with with cutoffs[1] <= 15 specifying the cutoffs to switch from 2 to 3 to ..., up to 10 term approximations for non-small n, where the direct formula loses precision. When missing (as by default), scheme is used, where scheme = "R3" chooses (15, 35, 80, 500), the cutoffs in use in R versions up to (and including) 4.0.z.

use.halves

logical indicating if the full-accuracy prestored values should be use when 2n \in \{0,1,\dots,30\}, i.e., n \le 15 and n is integer or integer + \frac{1}{2}. Turn this off to judge the underlying approximation accuracy by comparison with MPFR. However, keep the default TRUE for back-compatibility.

minPrec

a positive integer; for stirlerr_simpl, the minimal accuracy or precision in bits when mpfr numbers are used.

nalgm

number of terms to use for Chebyshev polynomial approximation in lgammacor(). The default, 5, is the value hard wired in R's C Mathlib.

xbig

a large positive number; if x >= xbig, the simple asymptotic approximation lgammacor(x) := 1/(12*x) is used. The default, 2^{26.5} = 94906265.6, is the value hard wired in R's C Mathlib.

Details

bd0():

Loader's “Binomial Deviance” function; for x, M > 0 (where the limit x \to 0 is allowed). In the case of dbinom, x are integers (and M = n p), but in general x is real.

bd_0(x,M) := M \cdot D_0\bigl(\frac{x}{M}\bigr),

where D_0(u) := u \log(u) + 1-u = u(\log(u) - 1) + 1. Hence

bd_0(x,M) = M \cdot \bigl(\frac{x}{M}(\log(\frac{x}{M}) -1) +1 \bigr) = x \log(\frac{x}{M}) - x + M.

A different way to rewrite this from Martyn Plummer, notably for important situation when \left|x-M \right| \ll M, is using t := (x-M)/M (and \left|t \right| \ll 1 for that situation), equivalently, \frac{x}{M} = 1+t. Using t,

bd_0(x,M) = \log(1+t) - t \cdot M = M \cdot [(t+1)(\log(1+t) - 1) + 1] = M \cdot [(t+1) \log(1+t) - t] = M \cdot p_1l_1(t),

and

p_1l_1(t) := (t+1)\log(1+t) - t = \frac{t^2}{2} - \frac{t^3}{6} ...

where the Taylor series expansion is useful for small |t|.

Note that bd0(x, M) now also works when x and/or M are arbitrary-accurate mpfr-numbers (package Rmpfr).

Value

a numeric vector “like” x; in some cases may also be an (high accuracy) "mpfr"-number vector, using CRAN package Rmpfr.

ebd0() (R code) and ebd0C() (interface to C code) are experimental, meant to be precision-extended version of bd0(), returning (yh, yl) (high- and low-part of y, the numeric result). In order to work for long vectors x, yh, yl need to be list components; hence we return a two-column data.frame with column names "yh" and "yl".

lgammacor(x) originally returned NaN for all |x| < 10, as its Chebyshev polynomial approximation has been constructed for x \in [10, xbig], specifically for u \in [-1,1] where t := 10/x \in [1/x_B, 1] and u := 2t^2 -1 \in [-1 + \epsilon_B, 1].

Author(s)

Martin Maechler

References

C. Loader (2000), see dbinom's documentation.

Our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.

See Also

dgamma, dpois. High precision versions stirlerrM(n) and stirlerrSer(n,k) in package DPQmpfr (via the Rmpfr and gmp packages).

Examples

n <- seq(1, 50, by=1/4)
st.n <- stirlerr(n) # now vectorized
stopifnot(identical(st.n, sapply(n, stirlerr)))
plot(n, st.n, type = "b", log="xy", ylab = "stirlerr(n)")

x <- 800:1200
bd0x1k <- bd0(x, np = 1000)
plot(x, bd0x1k, type="l", ylab = "bd0(x, np=1000)")
bd0x1kC <- bd0C(x, np = 1000)
lines(x, bd0x1kC, col=2)
bd0.1d1 <- bd0_p1l1d1(x, 1000)
bd0.1d  <- bd0_p1l1d (x, 1000)
bd0.1pm <- bd0_l1pm  (x, 1000)
stopifnot(exprs = {
    all.equal(bd0x1kC, bd0x1k,  tol=1e-14) # even tol=0 currently ..
    all.equal(bd0x1kC, bd0.1d1, tol=1e-14)
    all.equal(bd0x1kC, bd0.1d , tol=1e-14)
    all.equal(bd0x1kC, bd0.1pm, tol=1e-14)
})

str(log1pmx) ##--> play with  { tol_logcf, eps2, minL1, trace.lcf, logCF }

ebd0x1k <- ebd0 (x, 1000)
exC     <- ebd0C(x, 1000)
stopifnot(all.equal(exC, ebd0x1k, tol=4e-16))
lines(x, rowSums(ebd0x1k), col=adjustcolor(4, 1/2), lwd=4)

x <- 0:250
dp   <- dpois    (x, 48, log=TRUE)# R's 'stats' pkg function
dp.r <- dpois_raw(x, 48, log=TRUE)
all.equal(dp, dp.r, tol = 0) # on Linux 64b, see TRUE
stopifnot(all.equal(dp, dp.r, tol = 1e-14))
## dpois_raw()  versions:
(vers <- eval(formals(dpois_raw)$version))
mv <- sapply(vers, function(v) dpois_raw(x, 48, version=v))
matplot(x, mv, type="h", log="y", main="dpois_raw(x, 48, version=*)") # "fine"

if(all(mv[,"ebd0_C1"] == mv[,"ebd0_v1"])) {
    cat("versions 'ebd0_C1' and 'ebd0_v1' are identical for lambda=48\n")
    mv <- mv[, vers != "ebd0_C1"]
}
## now look at *relative* errors -- need "Rmpfr" for "truth"
if(requireNamespace("Rmpfr")) {

    dM <- Rmpfr::dpois(Rmpfr::mpfr(x, 256), 48)
    asN <- Rmpfr::asNumeric
    relE <- asN(mv / dM - 1)
    cols <- adjustcolor(1:ncol(mv), 1/2)

    mtit <- "relative Errors of dpois_raw(x, 48, version = * )"
    matplot(x, relE, type="l", col=cols, lwd=3, lty=1, main=mtit)
    legend("topleft", colnames(mv), col=cols, lwd=3, bty="n")

    matplot(x, abs(relE), ylim=pmax(1e-18, range(abs(relE))), type="l", log="y",
            main=mtit, col=cols, lwd=2, lty=1, yaxt="n")
    sfsmisc::eaxis(2)
    legend("bottomright", colnames(mv), col=cols, lwd=2, bty="n", ncol=3)
    ee <- c(.5, 1, 2)* 2^-52; eC <- quote(epsilon[C])
    abline(h=ee, lty=2, col="gray", lwd=c(1,2,1))
    axis(4, at=ee[2:3], expression(epsilon[C], 2 * epsilon[C]), col="gray", las=1)
    par(new=TRUE)
    plot(x, asN(dM), type="h", col=adjustcolor("darkgreen", 1/3), axes=FALSE, ann=FALSE)
    stopifnot(abs(relE) < 8e-13) # seen 2.57e-13
}# Rmpfr

[Package DPQ version 0.5-8 Index]