bbm_data_generate {DPBBM} | R Documentation |
bbm_data_generate
Description
This is to generate the simulation data based on Beta-bionomial mixture model
Usage
bbm_data_generate(S=3, G=50, K=3, prob=rep(1,times=3),
alpha_band=c(2,6),
beta_band=c(2,6),
nb_mu=100,nb_size=0.2, plotf = FALSE,
max_cor=0.5)
Arguments
S |
Number of samples in the simulated data |
G |
Number of sites in the simulated data |
K |
Number of clusters that exist in the simulated data |
prob |
the cluster weight for each cluster |
alpha_band |
the region used to generate the parameter of beta distribution alpha |
beta_band |
the region used to generate the parameter of beta distribution beta |
nb_mu |
alternative parametrization via mean for Negative Binomial distribution |
nb_size |
target for number of successful trials, or dispersion parameter (the shape parameter of the gamma mixing distribution) for Negative binomial distrition. Must be strictly positive, need not be integer. |
plotf |
option for whether plot the generated data according to clusters or not |
max_cor |
The maximized correlation allowed for the simulated data, which used to guarantee the data is not highly correlated. |
Details
The Dirichlet Process based beta-binomial mixture model clustering
Value
The function returns simulation data generated based on beta binomial mixture model
Author(s)
Lin Zhang, PhD <lin.zhang@cumt.edu.cn>
References
Reference coming soon!
Examples
set.seed(123455)
S <- 4
G <- 100
K <- 3
nb_mu <- 100
nb_size <- 0.8
prob <- c(1,1,1)
mat <- bbm_data_generate(S=S,G=G,K=K,prob=prob,alpha_band=c(2,6),beta_band=c(2,6),
nb_mu=nb_mu,nb_size=nb_size, plotf = TRUE, max_cor=0.5)
table(mat$gamma)
pie(mat$gamma)
id <- order(mat$gamma);
c <- mat$gamma[id]
mat_ratio <- (mat$k+1)/(mat$n+1);
heatmap(mat_ratio[id,], Rowv = NA, Colv = NA, scale="none", RowSideColors=as.character(c),
xlab = "4 samples", ylab="100 RNA methylation sites")