M_OEM {DOEM} | R Documentation |
The M-OEM algorithm replaces M-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.
Description
The M-OEM algorithm replaces M-step with stochastic step, which is used to solve the parameter estimation of Poisson mixture model.
Usage
M_OEM(y, K, alpha0, lambda0, a, b)
Arguments
y |
is a data vector |
K |
is the number of Poisson distribution |
alpha0 |
is the initial value of the mixing weight |
lambda0 |
is the initial value of the mean |
a |
represents the power of the reciprocal of the step size |
b |
indicates that the M-step is not implemented for the first b data points |
Value
M_OEMtime,M_OEMalpha,M_OEMlambda
Examples
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y= c(rep(0,n))
for(i in 1:n){
if(U[i]<=0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){
y[i] = rpois(1,lambda1[2])}
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1,lambda1[3])}
else if(U[i]>0.6*n & U[i]<=0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n ){
y[i] = rpois(1,lambda1[5])}
}
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=0.75
b=5
M_OEM(y,K,alpha0,lambda0,a,b)
[Package DOEM version 0.0.0.1 Index]