DM_OEM {DOEM} | R Documentation |
The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.
Description
The DM-OEM algorithm replaces M-step with stochastic step in distributed manner, which is used to solve the parameter estimation of Poisson mixture model.
Usage
DM_OEM(y, M, K, seed, alpha0, lambda0, a, b)
Arguments
y |
is a vector |
M |
is the number of subsets |
K |
is the number of Poisson distribution |
seed |
is the recommended way to specify seeds |
alpha0 |
is the initial value of the mixing weight |
lambda0 |
is the initial value of the mean |
a |
represents the power of the reciprocal of the step size |
b |
indicates that the M-step is not implemented for the first b data points |
Value
DM_OEMtime,DM_OEMalpha,DM_OEMlambda
Examples
library(stats)
set.seed(637351)
K=5
alpha1=c(rep(1/K,K))
lambda1=c(1,2,3,4,5)
n=300
U=sample(c(1:n),n,replace=FALSE)
y= c(rep(0,n))
for(i in 1:n){
if(U[i]<=0.2*n){
y[i] = rpois(1,lambda1[1])}
else if(U[i]>0.2*n & U[i]<=0.4*n){
y[i] = rpois(1,lambda1[2])}
else if(U[i]>0.4*n & U[i]<=0.6*n){
y[i] = rpois(1,lambda1[3])}
else if(U[i]>0.6*n & U[i]<=0.8*n){
y[i] = rpois(1,lambda1[4])}
else if(U[i]>0.8*n ){
y[i] = rpois(1,lambda1[5])}
}
M=5
seed=637351
set.seed(123)
e=sample(c(1:n),K)
alpha0=e/sum(e)
lambda0=c(1.5,2.5,3.5,4.5,5.5)
a=1
b=5
DM_OEM(y,M,K,seed,alpha0,lambda0,a,b)
[Package DOEM version 0.0.0.1 Index]