DNetFinder-package {DNetFinder}R Documentation

Estimating Differential Networks under Semiparametric Gaussian Graphical Models

Description

Provides a modified hierarchical test (Liu (2017) <doi:10.1214/17-AOS1539>) for detecting the structural difference between two Semiparametric Gaussian graphical models. The multiple testing procedure asymptotically controls the false discovery rate (FDR) at a user-specified level. To construct the test statistic, a truncated estimator is used to approximate the transformation functions and two R functions including lassoGGM() and lassoNPN() are provided to compute the lasso estimates of the regression coefficients.

Details

Index of help topics:

DNetFinder-package      Estimating Differential Networks under
                        Semiparametric Gaussian Graphical Models
DNetGGM                 Testing for the structural difference between
                        two GGMs
DNetNPN                 Testing for the structural difference between
                        two NPNGMs
lassoGGM                Estimating the regression coefficients in GGMs
                        with lasso
lassoNPN                Estimating the regression coefficients in
                        NPNGMs with lasso

Author(s)

Qingyang Zhang

Maintainer: Qingyang Zhang <qz008@uark.edu>

References

Li, X., Zhao, T., Yuan, X., Liu, H. (2015). The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R. Journal of Machine Learning Research, 16:553-557

Liu, H., Lafferty, J., Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 10:2295-2328

Liu, W. (2017). Structural Similarity and Difference Testing on Multiple Sparse Gaussian Graphical Models. Annals of Statistics, 45(6):2680-2707

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B, 58(1):267-288

Zhang, Q. (2017). Structural Difference Testing on Multiple Nonparanormal Graphical Models with False Discovery Rate Control. Preprint.

See Also

lassoGGM(), lassoNPN(), DNetGGM(), DNetNPN()

Examples

library(flare)
library(DNetFinder)
Data1=read.table(system.file("extdata","Data1.txt",package="DNetFinder"),header=FALSE)
Data2=read.table(system.file("extdata","Data2.txt",package="DNetFinder"),header=FALSE)
BetaGGM1=read.table(system.file("extdata","BetaGGM1.txt",package="DNetFinder"),header=FALSE)
BetaGGM2=read.table(system.file("extdata","BetaGGM2.txt",package="DNetFinder"),header=FALSE)
BetaNPN1=read.table(system.file("extdata","BetaNPN1.txt",package="DNetFinder"),header=FALSE)
BetaNPN2=read.table(system.file("extdata","BetaNPN2.txt",package="DNetFinder"),header=FALSE)
est_coefGGM=lassoGGM(Data1)
est_coefNPN=lassoNPN(Data1)
est_DNGGM=DNetGGM(Data1,Data2,BetaGGM1,BetaGGM2,alpha=0.1)
est_DNNPN=DNetNPN(Data1,Data2,BetaNPN1,BetaNPN2,alpha=0.1)

[Package DNetFinder version 1.1 Index]