DNetFinder-package {DNetFinder} | R Documentation |
Estimating Differential Networks under Semiparametric Gaussian Graphical Models
Description
Provides a modified hierarchical test (Liu (2017) <doi:10.1214/17-AOS1539>) for detecting the structural difference between two Semiparametric Gaussian graphical models. The multiple testing procedure asymptotically controls the false discovery rate (FDR) at a user-specified level. To construct the test statistic, a truncated estimator is used to approximate the transformation functions and two R functions including lassoGGM() and lassoNPN() are provided to compute the lasso estimates of the regression coefficients.
Details
Index of help topics:
DNetFinder-package Estimating Differential Networks under Semiparametric Gaussian Graphical Models DNetGGM Testing for the structural difference between two GGMs DNetNPN Testing for the structural difference between two NPNGMs lassoGGM Estimating the regression coefficients in GGMs with lasso lassoNPN Estimating the regression coefficients in NPNGMs with lasso
Author(s)
Qingyang Zhang
Maintainer: Qingyang Zhang <qz008@uark.edu>
References
Li, X., Zhao, T., Yuan, X., Liu, H. (2015). The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R. Journal of Machine Learning Research, 16:553-557
Liu, H., Lafferty, J., Wasserman, L. (2009). The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs. Journal of Machine Learning Research, 10:2295-2328
Liu, W. (2017). Structural Similarity and Difference Testing on Multiple Sparse Gaussian Graphical Models. Annals of Statistics, 45(6):2680-2707
Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B, 58(1):267-288
Zhang, Q. (2017). Structural Difference Testing on Multiple Nonparanormal Graphical Models with False Discovery Rate Control. Preprint.
See Also
lassoGGM(), lassoNPN(), DNetGGM(), DNetNPN()
Examples
library(flare)
library(DNetFinder)
Data1=read.table(system.file("extdata","Data1.txt",package="DNetFinder"),header=FALSE)
Data2=read.table(system.file("extdata","Data2.txt",package="DNetFinder"),header=FALSE)
BetaGGM1=read.table(system.file("extdata","BetaGGM1.txt",package="DNetFinder"),header=FALSE)
BetaGGM2=read.table(system.file("extdata","BetaGGM2.txt",package="DNetFinder"),header=FALSE)
BetaNPN1=read.table(system.file("extdata","BetaNPN1.txt",package="DNetFinder"),header=FALSE)
BetaNPN2=read.table(system.file("extdata","BetaNPN2.txt",package="DNetFinder"),header=FALSE)
est_coefGGM=lassoGGM(Data1)
est_coefNPN=lassoNPN(Data1)
est_DNGGM=DNetGGM(Data1,Data2,BetaGGM1,BetaGGM2,alpha=0.1)
est_DNNPN=DNetNPN(Data1,Data2,BetaNPN1,BetaNPN2,alpha=0.1)