SoftMax {DMwR2} | R Documentation |
Normalize a set of continuous values using SoftMax
Description
Function for normalizing the range of values of a continuous variable using the SoftMax function (Pyle, 199).
Usage
SoftMax(x, lambda = 2, avg = mean(x, na.rm = T), std = sd(x, na.rm = T))
Arguments
x |
A vector with numeric values |
lambda |
A numeric value entering the formula of the soft max function (see Details). Defaults to 2. |
avg |
The statistic of centrality of the continuous variable being normalized
(defaults to the mean of the values in |
std |
The statistic of spread of the continuous variable being normalized
(defaults to the standard deviation of the values in |
Details
The Soft Max normalization consist in transforming the value x into
1 / [ 1+ exp( (x-AVG(x))/(LAMBDA*SD(X)/2*PI) ) ]
Value
An object with the same dimensions as x
but with the values normalized
Author(s)
Luis Torgo ltorgo@dcc.fc.up.pt
References
Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.
Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman & Hall/CRC (ISBN-13: 978-1482234893).
See Also
Examples
## A simple example with the iris data set
data(iris)
summary(SoftMax(iris[["Petal.Length"]]))
summary(iris[["Petal.Length"]])